Phân tích :
a) \(\left(a^3+b^3\right)^3-\left(c^2-a^2\right)-\left(b^2+c^2\right)^3\)
b) x^3+ y^3+z^3 - 3yz
e) ( x^2 -x +1) ( x^2 -x +2 ) -12
f) x^ 8 +x ^4+ 1
g) x^3 + 9x^2+26x+24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
* Đặt tên các biểu thức theo thứ tự là A,B,C,D,E.
Câu a)
Theo hằng đẳng thức đáng nhớ ta có:
\(a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)\)
\(=(a+b+c)^3-3[ab(a+b)+bc(b+c)+ca(c+a)+2abc]\)
\(=(a+b+c)^3-3[ab(a+b+c)+bc(b+c+a)+ca(c+a+b)-abc]\)
\(=(a+b+c)^3-3[(a+b+c)(ab+bc+ac)]+3abc\)
\(\Rightarrow a^3+b^3+c^3-3abc=(a+b+c)^3-3(ab+bc+ac)(a+b+c)\)
\(=(a+b+c)[(a+b+c)^2-3(ab+bc+ac)]\)
\(=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)\) (*)
Do đó:
\(A=\frac{(a+b+c)(a^2+b^2+c^2-ab-bc-ac)}{a^2+b^2+c^2-ab-bc-ac}=a+b+c\)
Câu b)
\(x^3-y^3+z^3+3xyz=x^3+(-y)^3+z^3-3x(-y)z\)
Sử dụng kết quả (*) của câu a. Với \(a=x, b=-y, c=z\)
\(\Rightarrow x^3+(-y)^3+z^3-3x(-y)z=(x-y+z)(x^2+y^2+z^2+xy+yz-xz)\)
Mặt khác xét mẫu số:
\((x+y)^2+(y+z)^2+(x-z)^2=x^2+2xy+y^2+y^2+2yz+z^2+x^2-2xz+z^2\)
\(=2(x^2+y^2+z^2+xy+yz-xz)\)
Do đó: \(B=\frac{(x-y+z)(x^2+y^2+z^2+xy+yz-xz)}{2(x^2+y^2+z^2+xy+yz-xz)}=\frac{x-y+z}{2}\)
Câu c) Sử dụng kết quả (*) của phần a:
\(x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-yz-xz)\)
Và mẫu số:
\((x-y)^2+(y-z)^2+(z-x)^2=2(x^2+y^2+z^2-xy-yz-xz)\)
Do đó: \(C=\frac{(x+y+z)(x^2+y^2+z^2-xy-yz-xz)}{2(x^2+y^2+z^2-xy-yz-xz)}=\frac{x+y+z}{2}\)
Câu d)
Xét tử số:
\(a^2(b-c)+b^2(c-a)+c^2(a-b)\)
\(=a^2(b-c)-b^2[(b-c)+(a-b)]+c^2(a-b)\)
\(=(b-c)(a^2-b^2)-(b^2-c^2)(a-b)\)
\(=(b-c)(a-b)(a+b)-(b-c)(b+c)(a-b)\)
\(=(a-b)(b-c)[a+b-(b+c)]=(a-b)(b-c)(a-c)\) (1)
Xét mẫu số:
\(a^4(b^2-c^2)+b^4(c^2-a^2)+c^4(a^2-b^2)\)
\(=a^4(b^2-c^2)-b^4[(b^2-c^2)+(a^2-b^2)]+c^4(a^2-b^2)\)
\(=(a^4-b^4)(b^2-c^2)-(b^4-c^4)(a^2-b^2)\)
\(=(a^2-b^2)(a^2+b^2)(b^2-c^2)-(b^2-c^2)(b^2+c^2)(a^2-b^2)\)
\(=(a^2-b^2)(b^2-c^2)[a^2+b^2-(b^2+c^2)]\)
\(=(a^2-b^2)(b^2-c^2)(a^2-c^2)\)
\(=(a-b)(b-c)(a-c)(a+b)(b+c)(c+a)\)(2)
Từ (1)(2) suy ra \(D=\frac{1}{(a+b)(b+c)(c+a)}\)
Câu e)
Theo phần d ta có:
\(TS=(a-b)(b-c)(a-c)\)
\(MS=ab^2-ac^2-b^3+bc^2\)
\(=b^2(a-b)-c^2(a-b)=(a-b)(b^2-c^2)=(a-b)(b-c)(b+c)\)
Do đó: \(E=\frac{(a-b)(b-c)(a-c)}{(a-b)(b-c)(b+c)}=\frac{a-c}{b+c}\)
a/ x3 + x2 z + y2 z - xyz + y3
= (x + y)(x2 - xy + y2) + z(x2 - xy + y2)
= (x2 - xy + y2)(x + y + z)
\(1,x^3-7x+6\)
\(=x^3+3x^2-3x^2-9x+2x+6\)
\(=x^2\left(x+3\right)-3x\left(x+3\right)+2\left(x+3\right)\)
\(=\left(x+3\right)\left(x^2-3x+2\right)\)
\(=\left(x+3\right)\left(x^2-2x-x+2\right)\)
\(=\left(x+3\right)\left(x-2\right)\left(x-1\right)\)
\(2,x^3-9x^2+6x+16\)
\(=x^3+x^2-10x^2-10x+16x+16\)
\(=x^2\left(x+1\right)-10x\left(x+1\right)+16\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-10x+16\right)\)
\(=\left(x+1\right)\left(x^2-2x-8x+16\right)\)
\(=\left(x+1\right)\left(x-8\right)\left(x-2\right)\)
mk ms lm hai câu thôi mà đã mệt r , bh mk lm bt mai đi học ,lúc khác lm đ cko bn
Bài 1:
a: \(A=\dfrac{x^4+x^3+x+1}{x^4-x^3+2x^2-x+1}=\dfrac{x^3\left(x+1\right)+\left(x+1\right)}{x^4-x^3+x^2+x^2-x+1}\)
\(=\dfrac{\left(x+1\right)\left(x^3+1\right)}{\left(x^2-x+1\right)\left(x^2+1\right)}=\dfrac{\left(x+1\right)^2}{x^2+1}\)
Để A=0 thì x+1=0
hay x=-1
b: \(B=\dfrac{x^4-5x^2+4}{x^4-10x^2+9}=\dfrac{\left(x^2-1\right)\left(x^2-4\right)}{\left(x^2-1\right)\left(x^2-9\right)}=\dfrac{x^2-4}{x^2-9}\)
Để B=0 thi (x-2)(x+2)=0
=>x=2 hoặc x=-2
x\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)