CMR: Nếu 1 tam giác có 2 cạnh là a và b, góc nhọn tạo bở 2 đừơng thẳng đó là \(\alpha\) thì diện tích của tam giác đó bằng : \(S=\frac{1}{2}ab\sin\alpha\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì mình không vẽ được hình nên các bạn vẽ hình của bạn nhé
đặt tên : tam giác ABC, AB= a , AC= b , GÓC BAC là \(\alpha\) , kẻ BH vuông góc với AC
tam giác ABH vuông tại H \(\Rightarrow\) \(\sin\alpha\) = \(\frac{BH}{AB}\) \(\Rightarrow\) BH = sin\(\alpha\).AB
có \(s_{ABC}\) = \(\frac{1}{2}BH.AC\)
MÀ BH = sin \(\alpha\) . AB \(\Rightarrow\) S \(_{ABC}\) =\(\frac{1}{2}sin\alpha.AB.AC\) = \(\frac{1}{2}a.b.sin\alpha\) \(\Rightarrow\)đpcm
Làm như sau :
Kẻ AH vg BD ; CK vg BD
Sabd = 1/2.AH.BD (1)
Sbcd = 1/2.CK.BD (2)
từ (1) và (2) => Sabcd= Sabd + Sbcd = 1/2BD ( AH+CK) (*)
Tam giác AHO vuông tại H , theo tỉ số lượng giác giữa cạnh và góc
=> AH = OA . sin AOH (3)
Tương tự CK = OC.sin BOC (4)
Mà BOC = AOH => sin BOC = sin AOH (5)
Từ (3) và (4) và (5) => AH + CK = sin AOH ( OA + OC ) = AC .sin AOH (**)
Từ (*) và (**) => cái cần phải CM