cho tam giác abc vuông tại a. Trên cạnh AC lấy điểm I sao cho AI = 2cm, tia đối của AB lấy K sao cho AK=AB. Chứng minh tam giác IBC= tam giác KIC
Gọi M là trung điểm của CI. Chứng minh BM>BI
Chứng minh Bi đi qua trung điểm cạnh CK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Tính BC
tam giác ABC vuông tại A
Theo pitago ta có BC2=AB2+AC2
Mà AB=8
AC=6
=>BC2=64+36=100
=>BC=10
b,Tam giác BAI=tamgiác KAI(c.g.c)=>BI=KI
Góc BIA= góc KIA
Góc BIA+ gócBIC=1800
GócKIA+ góc KIC=1800
Mà góc BIA= góc KIA
=>Góc BIC = góc KIC
Xét tam giác BIC và tam giác KIC có
BI = KI(cmt)
GócBIC = góc KIC(cmt)
IC cạnh chung
=>tam giác BIC= tam giác KIC(c.g.c)
c, d, Tớ hết thời gian rồi k tớ nhé
a: AM=6-2=6cm
AN=12-3=9cm
=>AM/AB=AN/AC
=>MN//BC
b: Xet ΔAKC có NI//KC
nên NI/KC=AI/AK
Xét ΔABK có MI//BK
nên MI/BK=AI/AK
=>NI/KC=MI/BK
c: NI/KC=MI/BK
KC=KB
=>NI=MI
=>I là tđ của MN
a: Xét ΔABM và ΔADM có
AB=AD
AM chung
BM=DM
Do đó: ΔABM=ΔADM
a: Xét ΔBAD và ΔBMD có
BA=BM
góc ABD=góc MBD
BD chung
=>ΔBAD=ΔBMD
b: DA=DM
=>góc DAM=góc DMA