K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2016

a, Tính BC

tam giác ABC vuông tại A 

Theo pitago ta có BC2=AB2+AC2

Mà AB=8

     AC=6

=>BC2=64+36=100

=>BC=10

b,Tam giác BAI=tamgiác KAI(c.g.c)=>BI=KI

                                                        Góc BIA= góc KIA

Góc BIA+ gócBIC=1800

GócKIA+ góc KIC=1800

   Mà góc BIA= góc KIA

=>Góc BIC = góc KIC

Xét tam giác BIC và tam giác KIC có

 BI = KI(cmt)

GócBIC = góc KIC(cmt)

IC cạnh chung 

=>tam giác BIC= tam giác KIC(c.g.c)

c, d, Tớ hết thời gian rồi k tớ nhé

14 tháng 1 2019

Hình tự vẽ ( vẽ ở đây hơi khó )

a,Tam giác ABC cân tại A 

=> \(\widehat{BAC}=180^o-2\widehat{ACB}^{\left(1\right)}\)

Tam giác IAC cân tại I ( tự chứng minh tam giác IAM = tam giác IMC )

=>\(\widehat{AIC}=180^o-2\widehat{ACB}^{\left(2\right)}\)

Từ (1)(2) => \(\widehat{BAC}=\widehat{AIC}\)

b,\(\widehat{IBA}=\widehat{BAC}+\widehat{ACB}\)(t/c góc ngoài của tam giác)

\(\widehat{KAC}=\widehat{AIC}+\widehat{ACB}\) (t/c góc ngoài của tam giác)

mà \(\widehat{BAC}=\widehat{AIC}\left(cmt\right)\)

\(\Rightarrow\widehat{IBA}=\widehat{KAC}\)

Xét tam giác KAC và tam giác IBA có :

KA = IB (gt)

góc IBA = góc KAC (cmt)

AC = BA(gt)

=> tam giác KAC = tam giác IBA (c.g.c)

=> AI=KC (2 cạnh tương ứng)

mà AI = IC => KC=IC 

c,CI = CK (câu b) => tam giác CIK cân tại C

Do đó góc ICK = 90<=> góc K = góc AIC =45o

<=> góc BAC = 45( vì góc AIC = góc BAC (câu a))

Vậy tam giác ABC có AB=AC ,AB>BC và góc BAC = 45o thì góc ICK = 90o 

d, Đang nghĩ :(

14 tháng 1 2019

Làm tiếp câu D 

\(S_{\Delta ICK}=S_{\Delta ABC}+S_{\Delta AIB}+S_{\Delta AKC}=S_{\Delta ABC}+2_{\Delta AIB}\)  (Vì \(\Delta AIB=\Delta AKC\))

Mà \(S_{\Delta AIC}=3S_{\Delta ABC}\Rightarrow3S_{\Delta ABC}=S_{\Delta ABC}+2S_{\Delta AIB}\Rightarrow S_{\Delta ABC}=S_{\Delta AIB}\)

\(\Rightarrow IB=BC\)( vì chung chiều cao kẻ từ A)

Mà AB cắt IM tại H -> H là trọng tâm của tam giác AIC

-> CH đi qua trung điểm của AI

P/s: Bài này bn nên vẽ hai hình 

21 tháng 2 2021

Đáp án:

a) Vì ΔΔABC vuông tại A (Aˆ=90oA^=90o)

=> AB2+AC2=BC2AB2+AC2=BC2 (ĐL Pi-ta-go)

=> BC2=82+62=100BC2=82+62=100

=> BC=10BC=10cm

b) Vì AB = AD (gt)

mà A  BD (gt)

=> A trung điểm BD (ĐN trung điểm)

=> CA trung tuyến BD (ĐN trung tuyến)

lại có: CA  BD (AB  AC do Aˆ=90oA^=90o)

=> ΔΔCBD cân tại C (dhnb)

=> BC = CD (ĐN ΔΔ cân)

và CA là phân giác của BCDˆBCD^ (t/c ΔΔ cân)

=> C1ˆ=C2ˆC1^=C2^ (ĐN tia p/g)

Xét ΔΔBEC và ΔΔDEC có:

BC = CD (cmt)

C1ˆ=C2ˆC1^=C2^ (cmt)

EC: cạnh chung

=> ΔΔBEC = ΔΔDEC (c.g.c)

c) Vì CE là trung tuyến của ΔΔBCD (cmt)

mà AEAC=26=13AEAC=26=13 (AE = 2cm, AC = 6cm)

=> E là trọng tâm ΔΔBCD (dhnb)

=> DE là trung tuyến ΔΔBCD (ĐN trọng tâm)

 

=> DE đi qua trung điểm của BC (ĐN trung tuyến)

26 tháng 1 2016

Đừng tin bn Thạch bạn ấy nói dối đấy

26 tháng 1 2016

Dễ mà p áp dụng Pytago câu a, còn mấy câu kia mìh lm` biến vẽ hìh Cm qá p ơi.

Bài 12: 

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=8^2+6^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

b) Xét ΔABC vuông tại A và ΔADC vuông tại A có 

AC chung

AB=AD(gt)

Do đó: ΔABC=ΔADC(hai cạnh góc vuông)

Suy ra: CB=CD(hai cạnh tương ứng)

Xét ΔEAB vuông tại A và ΔEAD vuông tại A có 

EA chung

AB=AD(gt)

Do đó: ΔEAB=ΔEAD(hai cạnh góc vuông)

Suy ra: EB=ED(hai cạnh tương ứng)

Xét ΔCEB và ΔCED có

CE chung

CB=CD(cmt)

EB=ED(cmt)

Do đó: ΔCEB=ΔCED(c-c-c)

21 tháng 2 2021

MF vuông góc vs AB chứ