A=\(\frac{1}{2}\)x\(\frac{5}{7}\)+\(\frac{9}{7}\)x0,3+\(\frac{1}{2}\)x\(\frac{4}{7}\)+\(\frac{9}{4}\)+\(\frac{9}{7}\)x0.2
B=\(\frac{2002\cdot15-1}{2001+2002\cdot14}\)
Ai nhanh và đúng thì mình sẽ tick!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=\(\frac{2002.\left(14+1\right)-1}{2001+2002.14}\)=\(\frac{2002.14+2001}{2001+2002.14}\)=1
Giải hộ mình câu này với:
(215/216+3971/3972-1/5)x(-9/35+2/5-1/7)=..........................?
\(a,\frac{2001}{2002}.\frac{5}{7}.\frac{2002}{5}.\frac{7}{2001}=\left(\frac{2001}{2002}.\frac{7}{2001}\right).\left(\frac{5}{7}.\frac{2002}{5}\right)\)
\(=\frac{7}{2002}.\frac{2002}{7}=1\)
\(b,\frac{5}{7}.\frac{7}{9}.\frac{9}{11}.\frac{11}{13}=\left(\frac{5}{7}.\frac{7}{9}\right).\left(\frac{9}{11}.\frac{11}{13}\right)=\frac{5}{9}.\frac{9}{13}\)
\(=\frac{5}{13}\)
Ta có :
\(\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{6}-\frac{7}{8}+\frac{7}{10}}\)
\(=\)\(\frac{2\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}{7\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{2}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)}\)
\(=\)\(\frac{2}{7}-\frac{1}{\frac{7}{2}}\)
\(=\)\(\frac{2}{7}-\frac{2}{7}\)
\(=\)\(0\)
Chúc bạn học tốt ~
2.
a) Ta có:
\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)=\left(x+1\right)\left(\frac{1}{13}+\frac{1}{14}\right)\)
Vì \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\ne\frac{1}{13}+\frac{1}{14}\)nên \(x+1=0\Leftrightarrow x=-1\)
Vậy x = -1
b) Ta có:
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
\(\Rightarrow\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2003}+1\)
\(\Rightarrow\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
\(\Rightarrow\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}\right)=\left(x+2004\right)\left(\frac{1}{2002}+\frac{1}{2003}\right)\)
Vì \(\frac{1}{2000}+\frac{1}{2001}\ne\frac{1}{2002}+\frac{1}{2003}\)nên \(x+2004=0\Leftrightarrow x=-2004\)
Vậy, x = -2004
A=\([\)\(\frac{2}{7}\)\(\times\)(\(\frac{1}{4}-\frac{1}{3}\))\(]\)\(\div\)\([\)(\(\frac{2}{7}\times\)(\(\frac{3}{9}-\frac{2}{5}\))\(]\)
=(\(\frac{2}{7}\times\)\(\frac{-1}{12}\))\(\div(\)\(\frac{2}{7}\times\)\(\frac{-1}{15}\))
=\(\frac{-1}{42}\)\(\div\)\(\frac{-2}{35}\)
=\(\frac{-1}{42}\)\(\times\)\(\frac{35}{-2}\)
=\(\frac{5}{12}\)
A=\(\frac{99}{28}\)
B=1
Cả lời giải đi bạn!