K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABD và ΔECD có

góc ADB=góc EDC

góc ABD=góc ECD

=>ΔABD đồng dạng với ΔECD

b: AD là phân giác

=>DB/AB=DC/AC

=>DB/8=DC/12

=>DB/2=DC/3=(DB+DC)/(2+3)=15/5=3

=>DB=6cm; DC=9cm

27 tháng 3 2022

ai giúp mình lẹ nha nhanh mình tick nhé

a: Xét ΔABD và ΔECD có 

\(\widehat{ADB}=\widehat{EDC}\)

\(\widehat{ABD}=\widehat{ECD}\)

Do đó; ΔABD\(\sim\)ΔECD

b: Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/8=DC/12

=>DB/2=DC/3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DB}{2}=\dfrac{DC}{3}=\dfrac{DB+DC}{2+3}=\dfrac{15}{5}=3\)

Do đó: DB=6cm; DC=9cm

28 tháng 3 2022

undefined

a) Vì AB//CE (gt) 

=> BAD = CED (so le trong)

Xét tam giác ABD và tam giác ECD có 

BAD = CED (cmt)

ADB = EDC (đối đỉnh)

=> Tam giác ABD đồng dạng với tam giác ECD 

b) Đặt BD là x, ta có: 

CD = BC - BD = 15 - x

Xét tam giác ABC có AD là đường phân giác (gt) nên

=> BD/DC = AB/AC (Tính chất đường phân giác trong tam giác)

Thay số: x/15 - x = 8/12

=> 12x = 8(15 - x)

(=) 12x = 120 - 8x

(=) 20x = 120

(=) x = 6 

=> BD = 6

=> CD = BC - BD = 15 - 6 = 9 cm 

 

28 tháng 3 2022

em cảm ơn

27 tháng 3 2022

giúp mình vs

 

a: Xét ΔABD và ΔECD có 

\(\widehat{ADB}=\widehat{EDC}\)

\(\widehat{ABD}=\widehat{ECD}\)

Do đó; ΔABD\(\sim\)ΔECD

b: Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/8=DC/12

=>DB/2=DC/3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DB}{2}=\dfrac{DC}{3}=\dfrac{DB+DC}{2+3}=\dfrac{15}{5}=3\)

Do đó: DB=6cm; DC=9cm

a: Xét ΔABD và ΔECD có 

\(\widehat{ADB}=\widehat{EDC}\)

\(\widehat{ABD}=\widehat{ECD}\)

Do đó; ΔABD\(\sim\)ΔECD

b: Xét ΔABC có AD là phân giác

nên DB/AB=DC/AC

=>DB/8=DC/12

=>DB/2=DC/3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DB}{2}=\dfrac{DC}{3}=\dfrac{DB+DC}{2+3}=\dfrac{15}{5}=3\)

Do đó: DB=6cm; DC=9cm

12 tháng 12 2021

Gọi Bx là tia đối của tia BA. Lấy E trên AC sao cho AB = AE

Xét tam giác BAD=EAD c-g-c => BD = DE và DEC = CBx 

Trong tam giác ABC, BAC + ABC + ACB = 180 => ACB = 180 - BAC - ABC => ACB < 180 - ABC

Ta có DBx + ABC = 180 (hai góc kề bù) => DBx = 180 - ABC

=>ACB < DBx => ACB < DEC => Trong tam giác DEC, DC > DE (Quan hệ giữa góc và cạnh)

Vậy BD < DC

11 tháng 8 2017

Viết thiếu rồi bạn ơi mk ko hiểu

15 tháng 8 2017

mk viết đúng đề oy mà

26 tháng 4 2016

a) ta có

goc BAD+ goc DAC =90 (2 góc kề phụ)

goc ADB+goc HAD=90 ( tam giác AHD vuông tại H)

goc DAC=goc HAD (AD lả p/g goc  HAC)

==> góc BAD= goc ADB

-> tam giac BAD cân tại B

b) xet tam giac ADH và tam giac ADE ta có

AD= AD ( cạnh chung) 

goc HAD = goc DAC ( AD là p/g goc HAC)

goc AID = góc AIE (=90)

--> tam giac ADH= tam giac ADE (g-c-g)

-< AH= AE ( 2 canh tương ứng)

Xét tam giac AHD và tam giac AED ta có

AD=AD ( cạnh chung)

AH=AE (cmt)

goc DAH= goc DAE ( AD là p/g HAC)

-> tam giac AHD= tam giac AED ( c-g-c)

-> goc AHD= goc AED ( 2 góc tương ứng

mà góc AHD = 90 ( AH vuông góc BC)

nên AED =90

-> DE vuông góc AC

c) Xét tam giac ABH vuông tại H ta có

AB2= AH2+BH2 ( dly pi ta go)

152=122+BH2

BH2 =152-122=81

BH=9

ta có BA=BD ( tam giác ABD cân tại B)

          BA=15 cm (gt)

-> BD=15

mà BH+HD=BD ( H thuộc BD)

nên 9+HD=15

HD=15-9=6

Xét tam giác ADH vuông tại H ta có

AD2=AH2+HD2 ( định lý pitago)

AD2=122+62=180

-> AD=\(\sqrt{180}=6\sqrt{5}\)

12 tháng 5 2018

a) Vì BD = BA nên ΔΔBAD cân tại B

=> BADˆBAD^góc BAD = g BDA (góc đáy) →→-> đpcm

b) Ta có: góc BAD + g DAC = 90o

=> g DAC = 90o - g BAD (1)

Áp dụng tc tam giác vuông ta có:

g HAD + g BDA = 90o

=> g HAD = 90o - g BDA (2)

mà góc BAD = g BDA (câu a)

=> gDAC = g HAD

=> AD là tia pg của g HAC.

c) Áp dụng tc tổng 3 góc trong 1 tg ta có:

g AHD + g HDA + g HAD = 180o

=> 90o + g HDA + g HAD = 180o

=> g HDA + g HAD = 90o (3)

g DAC + g DKA + g ADK = 180o

=> g DAC + 90o + g ADK = 180o

=> g DAC + g ADK = 90o (4)

mà gDAC = g HAD hay gDAK = gHAD

Xét tgHAD và tgKAD có:

g HDA = g ADK (c/m trên)

AD chung

g HAD = g DAK (c/m trên)

=> tgHAD = tgKAD (g.c.g)

=> AH = AK (2 cạnh t/ư)