K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAK vuông tại A và ΔBHK vuông tại H có

BK chung

góc ABK=góc HBK

=>ΔBAK=ΔBHK

b: ΔBAK=ΔBHK

=>KA=KH

=>ΔKAH cân tại K

a: Xét ΔBHA vuông tại H và ΔBHE vuông tại H có

BH chung

góc ABH=góc EBH

=>ΔBHA=ΔBHE

b: Xét ΔBAK và ΔBEK có

BA=BE

góc ABK=góc EBK

BK chung

=>ΔBAK=ΔBEK

=>góc BEK=90 độ

=>EK vuông góc BC

c: AK=KE

KE<KC

=>AK<KC

12 tháng 4 2022

lm cho mk câu d là đc rồi nha

 

loading...  loading...  

b: Xét ΔBHA vuông tại H và ΔBHE vuông tại H có

BH chung

góc ABH=góc EBH

=>ΔBHA=ΔBHE

c: ΔBHA=ΔBHE

=>BA=BE

Xét ΔBAK và ΔBEK có

BA=BK

góc ABK=góc EBK

BK chung

=>ΔBAK=ΔBEK

=>góc BEK=góc BAK=90 độ

=>EK vuông góc bC

d: AK=KE

KE<KC

=>AK<KC

2 tháng 3 2018

a) Xét tam giác BHA và BHE có:

BD chung

\(\widehat{ABD}\)=\(\widehat{EBD}\)(vì BD là phân giác \(\widehat{B}\))

\(\widehat{BHA}\)=\(\widehat{BHE}\)(vì AH vuông góc với Bd tại H)

\(\Rightarrow\)Tam giác BHA=tam giac BHE(c.g.v-g.n.k)

b) Xét Tam giác BDA và tam giác BDE có

BD chung

BA=BE( vì tam giac BHA = tam giac BHE( chứng minh phần a))

ABD=EBD( vì BD là phân giác của\(\widehat{B}\))

\(\Rightarrow\)Tam giác BDA = Tam giác BDE(c.g.c)

\(\Rightarrow\)\(\widehat{BEA}\)=\(\widehat{A}\)= 90o(2 canh tương ứng và \(\widehat{A}\)= 90o)

ED vuông góc với B tại E

23 tháng 3 2020

A B C D K E H

d, DA= DE do tam giác ABD = tam giác EBD (Câu b)

=> tam giác DAE cân tại D (đn)

=> ^DAE = ^DEA (tc)            (1)

có : AK _|_ BC (gt) ; DE _|_ BC (câu b)

=> DE // AK 

=> ^DEA = ^EAK (slt) và (1)

=> ^DAE = ^EAK mà AE nằm giữa AD và AK 

=> AE là phân giác của ^CAK (đn)

c, AD = DE

DE < CD do tam giác CDE vuông tại E

=> AD < DC

a: BC=căn 6^2+8^2=10cm

c: Xét ΔABC có

AH,BK là phân giác

AH cắt BK tại O

=>O là tâm đường tròn nội tiếp

=>CO là phân giác của góc ACB

b) Ta có: KI\(\perp\)BC(gt)

AH\(\perp\)BC(gt)

Do đó: KI//AH(Định lí 1 từ vuông góc tới song song)

Suy ra: \(\widehat{HAI}=\widehat{KIA}\)(hai góc so le trong)(1)

Ta có: ΔABK=ΔIBK(cmt)

nên KA=KI(hai cạnh tương ứng)

Xét ΔKAI có KA=KI(cmt)

nên ΔKAI cân tại K(Định nghĩa tam giác cân)

Suy ra: \(\widehat{KAI}=\widehat{KIA}\)(hai góc ở đáy)(2)

Từ (1) và (2) suy ra \(\widehat{HAI}=\widehat{KAI}\)

\(\Leftrightarrow\widehat{HAI}=\widehat{CAI}\)

Suy ra: AI là tia phân giác của \(\widehat{HAC}\)(Đpcm)

a) Xét ΔABK vuông tại A và ΔIBK vuông tại I có 

BK chung

\(\widehat{ABK}=\widehat{IBK}\)(BK là tia phân giác của \(\widehat{ABI}\))

Do đó: ΔABK=ΔIBK(Cạnh huyền-góc nhọn)