Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn tham khảo câu hỏi của bn Viêt Thanh Nguyễn Hoàng nhé, bài ấy mik cx làm đấy
a) Có tam giác ABC vuông tại A
=>BC2=AC2+AB2 ( định lí Pitago)
=>BC2=82+62=100
=> BC=10 (cm)
b) Xét tam giác vuông ABE và tam giác vuông KBE có
Cạnh BE chung
Góc DBA= góc DBK hay góc EBA= góc EBK ( vì BD là tia phân giác của góc ABC)
=> tam giác ABE= tam giác KBE( cạnh góc vuông- góc nhọn)
=> BA=BK ( 2 cạnh tương ứng)
Vạy tam giác ABK cân tại B
c) Nối D với K, ta có tam giác DKE vuông tại E
Theo câu b, ta có tam giác ABE= tam giác KBE
=> KE=EA( 2 cạnh tương ứng) và góc EAB=góc EKB (1)
Xét tam giác vuông DEA và tam giác vuông DEK có
Cạnh DE chung
EA=KE
=> tam giác DEA= tam giác DEK ( 2 cạnh góc vuông)
=> Góc DAE=góc DKE (2)
Từ (1) và (2) =>góc DKE+ góc EKB=góc DAE+ góc EAB= góc DAB=90 độ
=> Góc DKB= 90 độ
Vậy DK vuông góc với BC
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
a) Xét ΔABD vuông tại A và ΔKBD vuông tại K có
BD chung
\(\widehat{ABD}=\widehat{KBD}\)(BD là tia phân giác của \(\widehat{ABK}\))
Do đó: ΔABD=ΔKBD(Cạnh huyền-góc nhọn)
1)Tự vẽ hình nha.Mình ko biết vẽ trên học mãi:
a)Áp dụng định lí Pytago vào tam giác vuông ABC:
BC^2=AB^2+AC^2
Thay:
BC^2=6^2+8^2=36+48=100
=>BC=10.
b)Ta có:
BK(BD) là đường phân giác của góc B(1)
AE vuông góc với BK(BD)=>BK là đường vuông góc(2)
Từ (1) và (2):
=>ABK là tam giác cân(vì tam giác có đường phân giác đồng thời là đường cao là tam giác cân)
c)Vì KED vuông tại E(do AE vuông với BD)
E=90 độ =>góc EKD+góc KDE=90 độ
Áp dụng tính chất góc ngoài của tam giác bằng tổng hai góc trong không kề với nó:
=>góc DKC=góc EKD+góc KDE=90 độ
=>DK vuông góc với KC hay BD
(ko biết đúng hay sai nữa mình đag học lớp 8 nhớ lại vài cái không đúng thì sửa lại giùm nhé!!!!!!!)
d mk ko bk
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
b) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))
Do đó: ΔAHD=ΔAKD(cạnh huyền-góc nhọn)
c) Ta có: ΔADH vuông tại H(gt)
nên \(\widehat{HDA}+\widehat{HAD}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{BDA}+\widehat{HAD}=90^0\)(2)
Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB,AC)
nên \(\widehat{BAD}+\widehat{KAD}=90^0\)(3)
Từ (2) và (3) suy ra \(\widehat{BDA}=\widehat{BAD}\)
Xét ΔBAD có \(\widehat{BDA}=\widehat{BAD}\)(cmt)
nên ΔBAD cân tại B(Định lí đảo của tam giác cân)
a) Áp dụng định lí Pi-Ta-go vào ΔABC :
\(AC^2=BC^2-AB^2=10^2-6^2=64\)
\(AC=\sqrt{64}=8\left(cm\right)\).
b) ΔABK có BE vừa là đường cao vừa là trung tuyến nên tam giác ABk là tam giác cân.( nếu bạn chưa học tính chất này thì xét 2 tam giác BEA và BEK cũng được, điều kiện xét đã có sẵn r).
c) Xét ΔABD và ΔKBD có:
AB=AK(ΔABK cân tại B)
Góc ABD=KBD(gt)
BD cạnh chung
Vậy ΔABD=ΔKBD(c.g.c)
=> Góc BAD=BKD=90o(hai góc tương ứng)
hay DK vuông góc với BC
d) Vì DK vuông góc với BC
AH vuông góc với BC
nên DK//AH => Góc DKA=HAK(so le trong) (1)
Vì ΔABD=KBD(cmt) => AD=KD(2 cạnh tương ứng) hay tam giác ADK cân tại K
=> Góc DKA=DAK hay DKA=CAK (2)
Từ (1) và (2) suy ra Góc HAK=CAK
Hay AK là tia phân giác của góc HAC.
a) BC = 10
b) xét tg ABE vuông tại E và tg KBE vuông tại E có:
^ABE = ^EBK (do BD là đường phân giác của góc B)
BE là cạnh chung
=> tg ABE = tg KBE ( cgv - gnk )
=>AB = BK ( 2 cạnh tương ứng )
=> tg ABK cân tại B
xin lỗi nhé câu c) và d) mình chưa biết cách làm