Cho tam giác DEF cân tại D có đường trung tuyến DI
a. Chứng minh: tam giác DEI = tam giác DFI
b. Chứng minh: DI vuông góc với EF
c. EN là đường trung tuyến. Chứng minh: IN // ED
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Xét tam giác DEI và tam giác DFI, có:
^E = ^F ( DEF cân )
DE = DF ( DEF cân )
EI = FI ( gt )
Vậy tam giác DEI = tam giác DFI ( c.g.c )
b.Ta có: DI là đường trung tuyến trong tam giác cân DEF
=>DI vuông góc EF
c.Ta có: DN = FN ( gt )
EI = FI ( gt )
=> IN là đường trung bình của tam giác DEF
=> IN//ED
a: Sửa đề: ΔDEF cân tại D
Xét ΔDEI và ΔDFI có
DE=DF
EI=FI
DI chung
=>ΔDEI=ΔDFI
b: ΔDEF cân tại D
mà DI là trung tuyến
nên DI là trung trực của EF
c: Xét ΔDEF có I,N lần lượt là trung điểm của FE,FD
=>IN là đường trung bình
=>IN//DE
a: Xét ΔDEI và ΔDFI có
DE=DF
EI=FI
DI chung
Do đó: ΔDEI=ΔDFI
b: Ta có: ΔDEF cân tại D
mà DI là đường trung tuyến
nên DI là đường cao
bn tham khỏa đường link này nha /hoi-dap/detail/220486054053.html
a: Xét ΔDEI và ΔDFI có
DE=DF
EI=FI
DI chung
=>ΔDEI=ΔDFI
b: ΔDEF cân tại D
mà DI là trung tuyến
nên DI vuông góc EF
c: Xét ΔDFE có FI/FE=FN/FD
nên IN//ED
chắc câu a và b bạn đả giải dc nên mình chỉ trinh bày câu c
bạn tự vẽ hình nha
c)en là đường trung tuyến của tam giác def nên nd=nf suy ra in là đường trung tuyến của tam giác dif
trên tia đối của tia ni , vẽ diểm t sao cho nt=ni
cmđ:tam giac dni=fnt(c.g.c)
suy ra di =tf(2ctu)và góc din=ftn mà 2 góc này ở vị trí so le trong nên di song song với tf suy ra góc die=tfi =90 độ
cmđ tam giác dif =tfi (c.g.c) suy ra df =ti (2 cạnh tương ứng) suy ra df/2=ti/2 nên dn=nf=ni=nt
ni=nf suy ra tam giác inf cân tại n nên góc nif =nfi mà dfi =dei (tam giác def cân tại d) nên góc nif=dei
và :2 góc này ở vị trí đồng vị
nên in song song với de
\(\text{a)Xét }\Delta DEI\text{ và }\Delta DFI\text{ có:}\)
\(DE=DF\left(\Delta DÈ\text{ cân tại D}\right)\)
\(\widehat{DEF}=\widehat{DFE}\left(\Delta DEF\text{ cân tại D}\right)\)
\(DI\text{ chung}\)
\(\Rightarrow\Delta DEI=\Delta DFI\left(c-g-c\right)\)
\(\text{b)Vì }\Delta DEI=\Delta DFI\left(cmt\right)\)
\(\Rightarrow\widehat{DIE}=\widehat{DIF}\left(\text{hai góc tương ứng}\right)\)
\(\text{Mà chúng kề bù}\)
\(\Rightarrow\widehat{DIE}=\widehat{DIF}=\dfrac{180^0}{2}=90^0\)
\(\Rightarrow DI\perp EF\)
\(\text{c)K bt sorry}\)
Mik vẽ trên máy nó k chính xác lắm có vãi chỗ bị lệch bn thông cảm
a) Vì △DEF là tam giác cân nên DE = DF
Xét △DEI và△DFI có:
DE = DF
EI = IF
DI : cạnh chung
Suy ra △DEI = △DFI(c.c.c)
b) Vì △DEF là tam giác cân có đường trung tuyến DI
nên DI đồng thời là đường cao của △DEF
Suy ra \(\widehat{DIE}\) là góc vuông.
c) △DIE vuông tạ I có:
DE2 = DI2 + IE2 (định lí Pi-ta-go)
DE2 = 122 + 52
DE2 = 169
DE = \(\sqrt{169}\)= 13 (cm)
a)tam giác dei=tg dfi (c.c.c)
b)nên góc dif bằng góc die bằng 90 độ nên di vuông góc với ef
c)EN là đường trung tuyến. nên nd=nf nên in là đường trung tuyến của tam giác vuông dif
trên tia đối tia ini vẽ điểm m sao cho nm=ni
chứng minh được tam giác dni=tam giác fnm (c.g.c)
nên di=ef (2ctu);và góc din bằng góc nmf(mà 2 góc này ở vị trí so le trong )nên di song song với mf nên goc dif bằng góc mfi bằng 90 độ
chứng minh đc tam giác dif =tam giác mfi (c.g.c) nên cạnh df =im nên in=1/2df nên in=nf nên tam giác inf cân tai n nên góc nif bằng nfi mà nfi = góc dei (tam giác def cân tại d) nên góc nif bằng góc dei
mà 2 góc này ở vị trí đồng vị nên in song song với de
bạn ơi ,bạn tự vẽ hình đi nha
Lương Ngọc Quỳnh Như làm sai câu c rồi