Cho tam giác ABC có độ dài phân giác trong là la, lb, lc. CMR: la ≤ ma và la+lb+lc≤p√3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
CMR không thể tìm được các số a;b;c \(\in\)Z sao cho la-bl+lb-cl+lc-al=2019.
l l là giá trị tuyệt đối
\(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|=2019\)
Chứng minh phản chứng (kết hợp phương pháp dùng BĐT):
ĐK: a,b,c ∈ ℤ
Giả sử ta có thể tìm các số a,b,c sao cho\(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|\ge2019\) (1)
(1) \(\Leftrightarrow\left|a-b\right|+\left|b-c\right|+\left|c-a\right|-2019\ge0\) (2)
Mà \(\left|a-b\right|\ge0\) (3)
\(\left|b-c\right|\ge0\)(4)
\(\left|c-a\right|\ge0\) (5)
Từ (3),(4),(5) suy ra \(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|-2019\ge-2019\) trái với (2)
Từ đó suy ra (1) không thể xảy ra.Suy ra \(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|=2019\) vô nghiệm với mọi a,b,c thuộc Z.
~Tham khảo nha~
(*).Cách khác:
Ta có: \(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|=2019\)
Mà \(\left|a-b\right|+\left|b-c\right|+\left|c-a\right|\ge\left|a-b+b-c+c-a\right|\) (
Nên \(\left|a-b+b-c+c-a\right|=2019\) (vô lý) (Do \(\left|a-b+b-c+c-a\right|=0\) với mọi a,b,c)
Suy ra đpcm
Không mất tính tồng quát, giả sử \(AB\le AC\)
Gọi M và D lần lượt là trung điểm và chân đường phân giác trong góc A trên BC
Theo định lý phân giác: \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\Rightarrow\dfrac{CD}{AC}=\dfrac{BD}{AB}\ge\dfrac{BD}{AC}\Rightarrow CD\ge BD\)
\(\Rightarrow BD\le BC-BD\Rightarrow BD\le\dfrac{1}{2}BC\)
\(\Rightarrow BD\le BM\)
\(\Rightarrow AD\le AM\) hay \(l_a\le m_a\)(đpcm)
Đặt \(A=l_a+l_b+l_c=\dfrac{2bc}{b+c}cos\dfrac{A}{2}+\dfrac{2ca}{c+a}cos\dfrac{B}{2}+\dfrac{2ab}{a+b}cos\dfrac{C}{2}\)
\(\Rightarrow A^2=\left(\dfrac{2bc}{b+c}cos\dfrac{A}{2}+\dfrac{2ca}{c+a}cos\dfrac{B}{2}+\dfrac{2ab}{a+b}cos\dfrac{C}{2}\right)^2\)
\(\Rightarrow A^2\le\left[\dfrac{4b^2c^2}{\left(b+c\right)^2}+\dfrac{4c^2a^2}{\left(c+a\right)^2}+\dfrac{4a^2b^2}{\left(a+b\right)^2}\right]\left(cos^2\dfrac{A}{2}+cos^2\dfrac{B}{2}+cos^2\dfrac{C}{2}\right)\)
Áp dụng BĐT cơ bản \(\left(x+y\right)\ge4xy\) ta có:
\(\dfrac{4b^2c^2}{\left(b+c\right)^2}+\dfrac{4c^2a^2}{\left(c+a\right)^2}+\dfrac{4a^2b^2}{\left(a+b\right)^2}\le\dfrac{4b^2c^2}{4bc}+\dfrac{4c^2a^2}{4ca}+\dfrac{4a^2b^2}{4ab}\)
\(=ab+bc+ca\le\dfrac{1}{3}\left(a+b+c\right)^2\)
Đồng thời:
\(cos^2\dfrac{A}{2}+cos^2\dfrac{B}{2}+cos^2\dfrac{C}{2}=\dfrac{3+cosA+cosB+cosC}{2}\le\dfrac{3+\dfrac{3}{2}}{2}=\dfrac{9}{4}\)
\(\Rightarrow A^2\le\dfrac{9}{4}.\dfrac{1}{3}\left(a+b+c\right)^2\)
\(\Rightarrow A\le\sqrt{3}\left(\dfrac{a+b+c}{2}\right)=p\sqrt{3}\) (đpcm)
Dấu "=" xảy ra khi tam giác ABC đều
Con cảm ơn thầy nhiều ạ.