\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)tim N=\(\frac{x^{123}.y^{456}}{2^{579}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo t/c dãy tỉ số=nhau;
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\) (x+y+z \(\ne\) 0)
=>x=y=z
Ta có: \(\frac{x^{123}.y^{456}}{z^{579}}=\frac{z^{123}.z^{456}}{z^{579}}=\frac{z^{579}}{z^{579}}=1\)
Vậy....
Theo t/c dãy tỉ số=nhau:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
=>x=y=z
Ta có: \(\frac{x^{123}.y^{456}}{z^{579}}=\frac{z^{123}.z^{456}}{z^{579}}=\frac{z^{579}}{z^{579}}=1\)
Bài 2: Cho x/y=y/z=z/x
+ Trường hợp 1: x/y=y/z=z/x=0
=> x = y= z = 0
=> z^576 =0
=> Không thoả mãn phân số
+ Trường hợp 2: x;y;z khác 0
Áp dụng tính chất của dãy tỉ số bằng nhau có:
x/y = y/z = z/x = (x+y+z)/(y+z+x) = 1
=> x = y = z
=> x^123 . y^456 = z^579
=> Phân số có giá trị = 1
k cho tớ nha!!!
Đặt \(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=x+y+z=k\)
Áp dụng TC DTSBN ta có :
\(k=\frac{x+y+z}{\left(y+z+1\right)+\left(z+x+1\right)+\left(x+y-2\right)}=\frac{\left(x+y+z\right)}{2\left(x+y+z\right)}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}y+z+1=2x\\z+x+1=2y\\x+y-2=2z\end{cases}}\) và \(x+y+z=\frac{1}{2}\)
\(\Leftrightarrow\hept{\begin{cases}x+y+z+1=3x\\x+y+z+1=3y\\x+y+z-2=3z\end{cases}}\) và \(x+y+z=\frac{1}{2}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{2}+1=3x\\\frac{1}{2}+1=3y\\\frac{1}{2}-2=3z\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\-\frac{1}{2}\end{cases}}\)
Vậy \(x=\frac{1}{2};y=\frac{1}{2};z=-\frac{1}{2}\)
\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+x+z+2+x+y-3}{x+y+z}=2\)
Suy ra
\(x+y+z=\frac{1}{2}\)(1)
\(y+z+1=2x\)(2)
\(x+z+2=2y\)(3)
\(x+y-3=2z\)(4)
(2)-(1) ta có
\(1-x=2x-\frac{1}{2}\Rightarrow3x=\frac{3}{2}\Rightarrow x=\frac{1}{2}\)
\(x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-x\Leftrightarrow y+z=\frac{1}{2}-\frac{1}{2}=0\)
\(y=-z\)
\(x+z+2=\frac{1}{2}+2-y==\frac{5}{2}-y\)
\(\frac{\frac{5}{2}-y}{y}=\frac{5}{2y}-1=2\Leftrightarrow\frac{5}{2y}=3\Leftrightarrow y=\frac{5}{6}\)
\(z=-\frac{5}{6}\)
Áp dụng BĐT Cauchy - Schwarz dạng phân thức, ta có :
\(P=\)\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+x+z+x+y}=\frac{\left(x+y+z\right)^2}{2x+2y+2z}=\frac{\left(x+y+z\right)^2}{2.\left(x+y+z\right)}=\frac{2^2}{2.2}=1\)
Dấu " = ' xảy ra \(\Leftrightarrow\)\(x=y=z\)
Vậy : \(MinP=1\)\(\Leftrightarrow x=y=z\)
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{y}\)=\(\frac{y}{z}\)=\(\frac{z}{x}\)=\(\frac{x+y+z}{x+y+z}\)= 1
=> N = x^( 123 + 456) = x^579
=> N = x^579 / 2^579