K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2016

Theo t/c dãy tỉ số=nhau:

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)

=>x=y=z

Ta có: \(\frac{x^{123}.y^{456}}{z^{579}}=\frac{z^{123}.z^{456}}{z^{579}}=\frac{z^{579}}{z^{579}}=1\)

23 tháng 1 2017

Bài 2: Cho x/y=y/z=z/x

+ Trường hợp 1: x/y=y/z=z/x=0

=> x = y= z = 0

=> z^576  =0

=> Không thoả mãn phân số

+ Trường hợp 2: x;y;z khác 0

Áp dụng tính chất của dãy tỉ số bằng nhau có:

x/y = y/z = z/x = (x+y+z)/(y+z+x) = 1

=> x = y = z

=> x^123 . y^456 = z^579

=> Phân số có giá trị = 1

k cho tớ nha!!!

23 tháng 1 2017

Bài 1 bạn sửa lại dấu ngoặc được không? Tớ không hiểu. @+@

19 tháng 6 2023

\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}\\ \Rightarrow\dfrac{y+z-x}{x}+2=\dfrac{z+x-y}{y}+2=\dfrac{x+y-z}{z}+2\\ \Rightarrow\dfrac{x+y+z}{x}=\dfrac{x+y+z}{y}=\dfrac{x+y+z}{z}\\ \Rightarrow x=y=z\\ \Rightarrow A=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)

19 tháng 6 2023

avt ảnh bạn à, vừa handsome vừa học giỏi nx -.-

11 tháng 3 2016

Theo t/c dãy tỉ số=nhau;

\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\) (x+y+z \(\ne\) 0)

=>x=y=z

Ta có: \(\frac{x^{123}.y^{456}}{z^{579}}=\frac{z^{123}.z^{456}}{z^{579}}=\frac{z^{579}}{z^{579}}=1\)

Vậy....

4 tháng 8 2016

Theo tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{y}\)=\(\frac{y}{z}\)=\(\frac{z}{x}\)=\(\frac{x+y+z}{x+y+z}\)= 1

=> N = x^( 123 + 456) = x^579

=> N = x^579 / 2^579

8 tháng 1 2017

Công hết lại=> x=y=z

670+670+672=2012

\(M=1\)

30 tháng 12 2016

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

A=\(\frac{y+z+z+x+x+y}{x+y+z}\)=\(\frac{2x+2y+2z}{x+y+z}\)=\(\frac{2\left(x+y+z\right)}{x+y+z}\)=2

30 tháng 12 2016

\(\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\)

\(\Rightarrow\frac{x}{y+z}+1=\frac{y}{z+x}+1=\frac{z}{x+y}+1\)

\(\Rightarrow\frac{x+y+z}{y+z}=\frac{y+z+x}{z+x}=\frac{z+x+y}{x+y}\)

Vì x+y+z khác 0 nên ta xét \(x+y+z\ne0\) suy ra x=y=z

Khi đó \(A=\frac{x+x}{x}+\frac{x+x}{x}+\frac{x+x}{x}=\frac{2x}{x}+\frac{2x}{x}+\frac{2x}{x}=2+2+2=6\)

1 tháng 3 2020

áp dụng tính chất của dãy tỉ số bằng nhau ta có:\(\frac{ }{ }\)

y+z-x/x=z+x-y/y=x+y-z/z

=y+z-x+z+x-y+x+y-z/x+y+z

=(y-y)+(z-z)-(x-x)+z+x+y/x+y+z

=0+0+0+x+y+z/x+y+z=1

\(\Leftrightarrow\)x=y=z (*)

thay (*) vào B ta có:

B=(1+x/x)(1+x/x)(1+x/x)

  =2.2.2=8

21 tháng 8 2020

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(...=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)( vì x + y + z \(\ne\)0 )

\(\Rightarrow\hept{\begin{cases}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{cases}}\Rightarrow\hept{\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}}\Rightarrow\hept{\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}}\Rightarrow x=y=z\)

Thế x = y = z vào B ta được :

\(B=\left(1+\frac{y}{y}\right)\left(1+\frac{x}{x}\right)\left(1+\frac{z}{z}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)