Cho đa thức f(x) thỏa mãn: f(x)+x*f(-x)=x+1 với mọi x. Tính f(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình ko dám chắc về cách làm nữa:
f(x)+x.f(-x)=x+1
Nếu x=0:
f(x)+0.f(-x)=x+1
f(x)=0+1=1
Nếu x=-1:
f(-1)+(-1).f(--1)=-1+1
f(-1)-f(1)=0
Nếu x=1:
f(1)+1.f(-1)=1+1
f(1)+f(-1)=2
f(1)+1.f(-1)=1+1
f(1)+f(-1)=2
=> f(1)+f(-1)-[f(-1)-f(1)]=f(1)+f(-1)+[f(-1)-f(1)]=2
f(1)+f(-1)-f(-1)+f(1)=f(1)+f(-1)+f(-1)-f(1)=2
f(1).2=2.f(-1)=2
f(1)=f(-1)=1
Vậy với mọi x thì f(x)=1
\(x=1\Rightarrow f\left(1\right)+f\left(-1\right)=2016;x=-1\Rightarrow f\left(-1\right)-f\left(1\right)=2014\Rightarrow\)
\(f\left(1\right)+f\left(-1\right)-f\left(-1\right)+f\left(1\right)=2\Leftrightarrow f\left(1\right)=1\)
Trả lời:
Bạn shitbo làm đúng rồi
^_^
\(.\)
Theo đề ra. ta có: f(x)+x.f(-x)=x+1
*) Xét x= -1 => f(-1)-f(1)=0 => f(-1)=f(1) (1)
*) Xét x=1 => f(1)+(-1)= 2 (2)
Từ 1 và 2 => f(1)=2:2=1
ta có: f(x) + xf(-x) = x + 2015 với mọi giá trị của x
=> f(1) + 1.f(-1) = 1 + 2015 => f(1) + f(-1) = 2016 (1)
f(-1) - 1 . f(1) = - 1 + 2015 => f(-1) - f(1) = 2014 (2)
Từ (1); (2) => f(-1) = ( 2016 + 2014 ) : 2 = 2015
*Thay x=1=>f(1)+f(-1)=1+1=2
*Thay x=-1=>f(-1)-f(1)=-1+1=0
=>f(1)+f(-1)-(f(-1)-f(1))=2-0
=>2.f(1)=2
=>f(1)=1
f(1) + 1.f(-1) = 1+ 1 = 2 => f(1) + f(-1) = 2 (*)
f(-1) + (-1). f(1) = -1 + 1 = 0 => f(-1) - f(1) = 0 => f(-1) = f(1). Thay vào (*)
=> 2. f(1) = 2 => f(1) = 1
1) Xét với x=3x=3 thì : 3.f(5)=(32−9).f(3)3.f(5)=(32−9).f(3)
⇒3.f(5)=0⇒f(5)=0⇒3.f(5)=0⇒f(5)=0 (*)
2) Xét với x=0⇔0=−9.f(0)⇒f(0)=0x=0⇔0=−9.f(0)⇒f(0)=0
nên x=0x=0 là 1 nghiệm của đa thức f(x)f(x) (1)
Xét với x=−3⇔3.f(−1)=0⇒f(−1)=0x=−3⇔3.f(−1)=0⇒f(−1)=0
nên x=−1x=−1 là 1 nghiệm của đa thức f(x)f(x) (2)
Từ (*)(1)(2) ⇒⇒ f(x)f(x) có ít nhất 3 nghiệm.
\(a,f\left(5\right)\Rightarrow x=3\\ 3f\left(5\right)=0f\left(3\right)\Rightarrow f\left(5\right)=0\\ b,x=0\Rightarrow0f\left(2\right)=-9f\left(0\right)\Rightarrow f\left(0\right)=0\)
=> x = 0 là nghiệm
\(x=-3\Rightarrow-3f\left(-1\right)=\left(9-9\right)f\left(-3\right)=0f\left(-3\right)\\ \Rightarrow f\left(-1\right)=0\)
=> x = -1 là nghiệm
Theo ý a) ta có \(x=5\)
\(\Rightarrow f\left(x\right)\) có 3 nghiệm \(=\left\{0;-1;5\right\}\)
Theo đề ra. ta có: f(x)+x.f(-x)=x+1
*) Xét x= -1 => f(-1)-f(1)=0 => f(-1)=f(1) (1)
*) Xét x=1 => f(1)+(-1)= 2 (2)
Từ 1 và 2 => f(1)=2:2=1
Với x=-1 =>f(-1)-f(1)=0 (1)
Với x=1 =>f(1)+f(-1)=2 (2)
Lấy 2 vế (1) trừ 2 vế (2) ta được: -2f(1)=-2=>f(1)=1