chứng minh rằng :(17^n+2).(17^n+1)chia hết cho 6 với mọi số tụ nhiên n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì $n, n+1$ là hai số tự nhiên liên tiếp nên trong đó sẽ tồn tại 1 số chẵn và 1 số lẻ.
$\Rightarrow n(n+1)\vdots 2$
$\Rightarrow n(n+1)(13n+17)\vdots 2(*)$
Mặt khác:
Nếu $n$ chia hết cho 3 thì $n(n+1)(13n+7)\vdots 3$
Nếu $n$ chia 3 dư $1$: Đặt $n=3k+1$ thì:
$13n+17=13(3k+1)+17=39k+30=3(13k+10)\vdots 3$
$\Rightarrow n(n+10)(13n+17)\vdots 3$
Nếu $n$ chia 3 dư $2$. Đặt $n=3k+2$ thì:
$n+1=3k+3=3(k+1)\vdots 3$
$\Rightarrow n(n+1)(13n+17)\vdots 3$
Vậy $n(n+1)(13n+17)\vdots 3$ với mọi $n$ tự nhiên $(**)$
Từ $(*); (**)\Rightarrow n(n+1)(13n+17)\vdots 6$.
\(A=405^n+2^{405}+17^{37}\left(n\in N\right)\)
\(\Rightarrow A=\overline{.....5}+2^{4.101}.2+17^{4.9}.17\)
\(\Rightarrow A=\overline{.....5}+\overline{.....6}.2+\overline{.....1}.17\)
\(\Rightarrow A=\overline{.....5}+\overline{.....2}+\overline{.....7}\)
\(\Rightarrow A=\overline{......4}\)
Vì chữ số tận cùng của \(A\) là \(4\)
Nên \(A=405^n+2^{405}+17^{37}\) không chia hết cho \(10\)
\(\Rightarrow dpcm\)
a,60 chia hết cho 15 => 60n chia hết cho 15 ; 45 chia hết cho 15 => 60n+45 chia hết cho 15 (theo tính chất 1)
60n chia hết cho 30 ; 45 không chia hết cho 30 => 60n+45 không chia hết cho 30 (theo tính chất 2)
b,Giả sử có số a thuộc N thoả mãn cả 2 điều kiện đã cho thì a=15k+6 (1) và a=9q+1.
Từ (1) suy ra a chia hết cho 3, từ (2) suy ra a không chia hết cho 3. Đó là điều vô lí. Vậy không có số tự nhiên nào thoả mãn đề.
c,1005 chia hết cho 15 => 1005a chia hết cho 15 (1)
2100 chia hết cho 15 => 2100b chia hết cho 15 (2)
Từ (1) và (2) suy ra 1005a+2100b chia hết cho 15 (theo tính chất 1)
d,Ta có : n^2+n+1=nx(n+1)+1
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2 suy ra nx(n+1)+1 là một số lẻ nên không chia hết cho 2.
nx(n+1) là tích của 2 số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9 nên nx(n+1)+1 không có tận cùng là 0 hoặc 5, do đó nx(n+1)+1 không chia hết cho 5.
Mình xin trả lời ngắn gọn hơn! a)60 chia hết cho 15=> 60n chia hết cho 15 15 chia hết cho 15 =>60n+15 chia hết cho 15. 60 chia hết cho 30=>60n chia hết cho 30 15 không chia hết cho 30 =>60n+15 không chia hết cho 30 b)Gọi số tự nhiên đó là A Giả sử A thỏa mãn cả hai điều kiện => A= 15.x+6 & = 9.y+1 Nếu A = 15x +6 => A chia hết cho 3 Nếu A = 9y+1 => A không chia hết cho 3 => vô lí.=> c) Vì 1005;2100 chia hết cho 15=> 1005a; 2100b chia hết cho 15. => 1500a+2100b chia hết cho 15. d) A chia hết cho 2;5 => A chia hết cho 10. => A là số chẵn( cụ thể hơn là A là số có c/s tận cùng =0.) Nếu n là số chẵn => A là số lẻ. (vì chẵn.chẵn+chẵn+lẻ=lẻ) Nếu n là số lẻ => A là số lẻ (vì lẻ.lẻ+lẻ+lẻ=lẻ) => A không chia hết cho 2;5
Chứng minh rằng với mọi số tự nhiên n, biểu thức 16n -1 chia hết cho 17 khi và chỉ khi n là số chẵn.
Với n chẵn thì n = 2k
\(\Rightarrow16^{2k}-1=256^k-1=\left(256-1\right)\left(256^{k-1}+...\right)\)\(=255\left(256^{k-1}+...\right)=17.15.\left(256^{k-1}+...\right)\)
Chia hết cho 17
Với n lẻ thì n = 2k + 1
\(\Rightarrow16^{2k+1}-1=16\left(16^{2k}-1\right)+15\)không chia hết cho 17
Vậy 16n - 1 chia hết cho 17 khi và chỉ khi n là số chẵn
2,
+ n chẵn
=> n(n+5) chẵn
=> n(n+5) chia hết cho 2
+ n lẻ
Mà 5 lẻ
=> n+5 chẵn => chia hết cho 2
=> n(n+5) chia hết cho 2
KL: n(n+5) chia hết cho 2 vơi mọi n thuộc N
3,
A = n2+n+1 = n(n+1)+1
a,
+ Nếu n chẵn
=> n(n+1) chẵn
=> n(n+1) lẻ => ko chia hết cho 2
+ Nếu n lẻ
Mà 1 lẻ
=> n+1 chẵn
=> n(n+1) chẵn
=> n(n+1)+1 lẻ => ko chia hết cho 2
KL: A không chia hết cho 2 với mọi n thuộc N (Đpcm)
b, + Nếu n chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
+ Nếu n chia 5 dư 1
=> n+1 chia 5 dư 2
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 2
=> n+1 chia 5 dư 3
=> n(n+1) chia 5 dư 1
=> n(n+1)+1 chia 5 dư 2
+ Nếu n chia 5 dư 3
=> n+1 chia 5 dư 4
=> n(n+1) chia 5 dư 2
=> n(n+1)+1 chia 5 dư 3
+ Nếu n chia 5 dư 4
=> n+1 chia hết cho 5
=> n(n+1) chia hết cho 5
=> n(n+1)+1 chia 5 dư 1
KL: A không chia hết cho 5 với mọi n thuộc N (Đpcm)
Ta sẽ chứng minh \(\left(17^n+2\right)\left(17^n+1\right)\)sẽ chia hết cho \(2\)và \(3\).
Do \(17^n\)lẻ nên \(17^n+1\)chẵn nên \(17^n+1\)chia hết cho \(2\).
Có \(17^n,17^n+1,17^n+2\)là ba số tự nhiên liên tiếp nên một trong ba số đó phải chia hết cho \(3\).
Mà \(17⋮̸3\Rightarrow17^n⋮̸3\)suy ra \(17^n+1\)hoặc \(17^n+2\)chia hết cho \(3\)với mọi \(n\).
Do đó \(\left(17^n+2\right)\left(17^n+1\right)⋮6\).