Cho a>b
Chứng tỏ a/b>a+k/b+k
Anh em giúp tôi với nhé.Cảm ơn nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\left|x\right|=2017\Rightarrow\hept{\begin{cases}x=-2017\\x=2017\end{cases}\Rightarrow}x=\pm2017\)
\(b)A=1+2^1+2^2+...+2^{2017}\)
\(2A=2+2^2+2^3+...+2^{2018}\)
\(2A-A=(2+2^2+2^3+...+2^{2018})-(1+2^2+2^3+...+2^{2017})\)
\(A=2^{2018}-1\)
...
Rồi còn khúc để bạn so sánh đó
Bài làm
a) 7x - 13 = 32 . 4
=> 7x - 13 = 9 . 4
=> 7x - 13 = 36
=> 7x = 36 + 13
=> 7x = 49
=> x = 49 : 7
=> x = 7
Vậy x = 7
# Học tốt #
7x - 13 = 32.4
7x - 13 = 9.4
7x - 14 = 36
7x = 36 + 14
7x = 49
x = 49 : 7
x = 7
\(VT=\left(\sqrt{\dfrac{a}{b}}-\sqrt{\dfrac{b}{a}}\right):\left(a-b\right)\\ =\left(\dfrac{\sqrt{a}}{\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}}\right).\dfrac{1}{a-b}\\ =\dfrac{\sqrt{a}.\sqrt{a}-\sqrt{b}.\sqrt{b}}{\sqrt{ab}}.\dfrac{1}{a-b}\\ =\dfrac{\sqrt{a^2}-\sqrt{b^2}}{\sqrt{ab}}.\dfrac{1}{a-b}\\ =\dfrac{a-b}{\sqrt{ab}}.\dfrac{1}{a-b}\\ =\dfrac{1}{\sqrt{ab}}=VP\left(dpcm\right)\)
\(VT=\dfrac{a-b}{\sqrt{ab}}\cdot\dfrac{1}{a-b}=\dfrac{1}{\sqrt{ab}}=VP\)
Ta có :
\(a+b+c=0\)
\(\Rightarrow\)\(\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)
Đặt \(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\) ta có :
\(P=\left(\frac{b}{b}+\frac{a}{b}\right)\left(\frac{c}{c}+\frac{b}{c}\right)\left(\frac{a}{a}+\frac{c}{a}\right)\)
\(P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\)
Thay \(a+b=-c\)\(;\)\(b+c=-a\) và \(a+c=-b\) vào \(P=\frac{a+b}{b}.\frac{b+c}{c}.\frac{a+c}{a}\) ta được :
\(P=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}\)
\(P=\frac{-abc}{abc}\)
\(P=-1\)
Vậy \(P=-1\)
Chúc bạn học tốt ~
Câu 1: Giải
\(\frac{a}{b}< 1\Leftrightarrow a< b\)
\(\Leftrightarrow am< bm\)
\(\Leftrightarrow ab+am< ab+bm\)
\(\Leftrightarrow a\left(b+m\right)< b\left(a+m\right)\)
\(\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\left(đpcm\right)\)
Câu 2: Giải
Ta có : \(\hept{\begin{cases}\frac{437}{564}=1-\frac{127}{564}\\\frac{446}{573}=1-\frac{127}{573}\end{cases}}\)
Vì \(\frac{127}{564}>\frac{127}{573}\) nên \(\frac{437}{564}>\frac{446}{573}\)
a>b =>2a>2b =>-2a<-2b =>3-2a<3-2b. Mà 3-2b<4-2b. Vậy 3-2a<4-2b (tính chất bắc cầu).
Ta có \(a>b\Rightarrow2a>2b\Rightarrow-2a<-2b\)
Mà \(3<4\)
Do đó \(3-2a<4-2b\)
Anh em hả, mk ko phải anh
Do a > b
=> a.k > b.k
=> a.k + a.b > b.k + a.b
=> a.(b + k) > b.(a + k)
=> a/b > a+k/b+k