K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 12 2018

\(a)\left|x\right|=2017\Rightarrow\hept{\begin{cases}x=-2017\\x=2017\end{cases}\Rightarrow}x=\pm2017\)

\(b)A=1+2^1+2^2+...+2^{2017}\)

\(2A=2+2^2+2^3+...+2^{2018}\)

\(2A-A=(2+2^2+2^3+...+2^{2018})-(1+2^2+2^3+...+2^{2017})\)

\(A=2^{2018}-1\)

...

Rồi còn khúc để bạn so sánh đó

16 tháng 7 2019

TL mà cảm ơn bạn nhé

9 tháng 5 2022

\(2022A=2022+2022^2+2022^3+2022^4+...+2022^{2018}\)

\(2021A=2022A-A=2022^{2018}-1\Rightarrow A=\dfrac{2022^{2018}-1}{2021}\)

\(\Rightarrow A< B\)

9 tháng 1 2019

Ta có: A= 1+2+2^2+2^3+...+2^2018

        2A = 2+2^2+2^3+2^4+...+2^2019

 2A-A=A= 2^2019-1 = (2^2017.4) -1

                     Mà B=5.2^2017

=> (2^2017.4) -1 < 5.2^2017

=> A < B

13 tháng 12 2017

Ta có : \(A=1+2+2^2+...+2^{2017}\)(1)

\(\Rightarrow2A=2+2^2+2^3+...+2^{2018}\)(2)

Lấy (2) trừ (1) ta có : 

\(\Rightarrow A=2^{2018}-1\)

\(\Rightarrow A< B\). Vì \(B=2^{2018}\)

13 tháng 12 2017

A = 1+2+22+23+.....+22017

2A = 2(1+2+22+23+.....+22017)  = 2+22+23+24+.....+22018

2A - A = 2+22+23+24+.....+22018- (1+2+22+23+.....+22017)

=> A = 2+22+23+24+.....+22018-1-2-22-23-.....-22017

       A =22018-1 < 22018

Vậy A < B