nếu a/b+c/d=0 thì
A a/b= -c/d B a/b=c/-d C a/b= -c/d
D cả ba đều đúng
giúp mình với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo tính chất của tỉ lệ thức
`a/b=c/d -> a*d=b*c`
Xét các đ/án trên `-> C.`
`a)a/b<c/d`
Nhân 2 vế cho `bd>0` ta có:
`(abd)/b<(bcd)/d`
`<=>ad<bc`
`b)ad<bc`
Chia 2 vế cho `bd>0` ta có:
`(ad)/(bd)<(bc)/(bd)`
`<=>a/b<c/d`.
a: Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{a}{c}=\dfrac{b}{d}\)
d: Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{a}{c}=\dfrac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\)
Ta có: ( Giải chi tiết )
Giả sử có \(-a\) và \(b\) thì:
\(\left(-a\right).b\) ( Vì " - " nhân " + " bằng " - " \(\Rightarrow\left(-\right)< 0\)) \(\Rightarrow\) Loại A.
\(\left(-a\right).b\) ( Như trên ) \(\Rightarrow\) Giữ B.
\(\left(-a\right)+b\).
TH1: (-a) + b = -c ⇒ -c < 0. vd: (-3) + 2 = -1 < 0
TH2: (-a) + b = c ⇒ c > 0. vd: (-1) + 2 = 1 > 0
\(\Rightarrow\) Loại C.
\(\left(-a\right).b\) ( Như trường hợp a,b ) \(\Rightarrow\) Loại D.
Vậy chọn phương án B.
Chọn D.