Bài 2 a, Cho tam giác abc vuông tại a. AB= 4 cm, BC= 7 cm. Tính AC. b, G là trọng tâm của tam giác abc. Tính AG
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Áp dụng Đ. L. py-ta-go vào tg ABC vuông tại A, có:
BC2=AC2+AB2
=>72=AC2+42
=>AB2=72-42
=49-16
=33.
=>AC= giá trị tuyệt đối của 33.
a) Xét tam giác ABC vuông tại A, áp dụng định lý Pytago ta có :
\(BC^2=AB^2+AC^2=5^2+12^2=25+144=169=13^2\)
Mà BC>0 nên BC = 13 cm.
Vậy BC = 13 cm.
b) AM là đường trung tuyến ứng với cạnh huyền nên \(AM=\frac{1}{2}BC=\frac{13}{2}=6,5\)(cm)
Vậy AM = 6,5 cm.
c) G là trọng tâm tam giác nên ta có \(AG=\frac{2}{3}AM=\frac{2}{3}.6,5=\frac{13}{3}\)(cm)
Vậy AG = 13/3 cm.
nhìn vào hình vẽ nhá, tớ gửi hình trước cho cậu dễ thấy thôi:
a) xét 2 tam giác vuông: ABH VÀ ACH, CÓ:
AH LÀ CẠNH CHUNG
AB = AC (VÌ TAM GIÁC ABC CÂN TẠI A)
=> \(\Delta ABH=\Delta ACH\) (CẠNH HUYỀN - CẠNH GÓC VUÔNG)
a) Xét tam giác ABH và tam giác ACH
có AB = AC
AH cạnh chung
\(\Rightarrow\)tam giác ABH = tam giác ACH
xét tam giác BMC có:
CA vuông góc với BM (gt) => CA đường cao tam giác BMC
MK vuông góc với BC (cmt) => MK đường cao tam giác BMC
Mà CA cắt MK tại D (gt)
từ 3 điều đó => BD là đường cao thứ 3 của tam giác BMC
=> BD vuông góc với CM ( t/c )
k nha,
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2+16=49\)
=>\(AC=\sqrt{49-16}=\sqrt{33}\left(cm\right)\)
b: Gọi M là trung điểm của BC
Xét ΔABC có
AM là đường trung tuyến
G là trọng tâm
Do đó: AG=2/3AM
ΔABC vuông tại A có AM là đường trung tuyến
nên \(AM=\dfrac{BC}{2}=3,5\left(cm\right)\)
=>\(AG=\dfrac{2}{3}\cdot AM=\dfrac{2}{3}\cdot\dfrac{7}{2}=\dfrac{7}{3}\left(cm\right)\)