K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2017

A B C M G

a) Xét tam giác ABC vuông tại A, áp dụng định lý Pytago ta có :

\(BC^2=AB^2+AC^2=5^2+12^2=25+144=169=13^2\)

Mà BC>0 nên BC = 13 cm.

 Vậy BC = 13 cm.

b) AM là đường trung tuyến ứng với cạnh huyền nên \(AM=\frac{1}{2}BC=\frac{13}{2}=6,5\)(cm)

Vậy AM = 6,5 cm.

c) G là trọng tâm tam giác nên ta có \(AG=\frac{2}{3}AM=\frac{2}{3}.6,5=\frac{13}{3}\)(cm)

Vậy AG = 13/3 cm.

a: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=10(cm)

20 tháng 4 2022

Hình em tự vẽ ra nhé.

Áp dụng đl pytago vào tam giác vuông ABC có:

AB^2 + AC^2 = BC^2

-- > BC = 5 (cm)

Vì tam giác ABC vuông tại A, AM là đường trung tuyến ứng với cạnh huyền BC nên ta có:

\(AM=\dfrac{1}{2}BC=\dfrac{1}{2}.5=2,5\left(cm\right)\)

Vì G là trọng tâm tâm giác ABC, ta lại có:

\(AG=\dfrac{2}{3}AM=\dfrac{2}{3}.2,5=\dfrac{5}{3}\left(cm\right)\)

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2+16=49\)

=>\(AC=\sqrt{49-16}=\sqrt{33}\left(cm\right)\)

b: Gọi M là trung điểm của BC

Xét ΔABC có 

AM là đường trung tuyến

G là trọng tâm

Do đó: AG=2/3AM

ΔABC vuông tại A có AM là đường trung tuyến

nên \(AM=\dfrac{BC}{2}=3,5\left(cm\right)\)

=>\(AG=\dfrac{2}{3}\cdot AM=\dfrac{2}{3}\cdot\dfrac{7}{2}=\dfrac{7}{3}\left(cm\right)\)