1.
Cho ΔABC vuông tại A.\(\widehat{B}\)=50o.Có BC=5cm,AB=3cm
a)Tính số đo \(\widehat{C}\).Tính độ dài AC
b)Gọi M là trung điểm của BC,kẻ đường thẳng d đi qua đỉnh C và song song với AB,d cắt AM tại điểm D ..CMR MA=MD
2.
Cho ΔDFE vuông tại E.\(\widehat{D}\)=30o.Có DF=10cm,EF=6cm
a)Tính số đo \(\widehat{F}\).Tính độ dài DE
b)Gọi I là trung điểm của DF,kẻ đường thẳng a đi qua đỉnh D và song song với EF,a cắt EI tại điểm P.CMR IE=IP
hộ tui tuần sau thi giữa hk II rùi
Câu 2:
a: ΔDEF vuông tại E
=>\(\widehat{EDF}+\widehat{EFD}=90^0\)
=>\(\widehat{EFD}+30^0=90^0\)
=>\(\widehat{EFD}=60^0\)
ΔDEF vuông tại E
=>\(ED^2+EF^2=FD^2\)
=>\(ED^2=10^2-6^2=64\)
=>\(ED=\sqrt{64}=8\left(cm\right)\)
b: Xét ΔIFE và ΔIDP có
\(\widehat{IFE}=\widehat{IDP}\)(hai góc so le trong, EF//DP)
IF=ID
\(\widehat{FIE}=\widehat{DIP}\)(hai góc đối đỉnh)
Do đó: ΔIFE=ΔIDP
=>IE=IP
Câu 1:
a: ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}=90^0-50^0=40^0\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=5^2-3^2=16\)
=>\(AC=\sqrt{16}=4\left(cm\right)\)
b: Xét ΔMAB và ΔMDC có
\(\widehat{MBA}=\widehat{MCD}\)(hai góc so le trong, BA//CD)
MB=MC
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
Do đó: ΔMAB=ΔMDC
=>MA=MD