Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔDEF có DI là phân giác
nên \(\dfrac{DE}{DF}=\dfrac{EI}{IF}\)
=>\(\dfrac{EI}{4,8}=\dfrac{10}{6}=\dfrac{5}{3}\)
=>EI=8(cm)
b: Ta có: EI+IF=EF
=>EF=6+8=14(cm)
Xét ΔEDF có MI//DF
nên \(\dfrac{MI}{DF}=\dfrac{EI}{EF}=\dfrac{EM}{ED}\)
=>\(\dfrac{MI}{6}=\dfrac{EM}{10}=\dfrac{6}{14}=\dfrac{3}{7}\)
=>\(MI=\dfrac{18}{7}\left(cm\right);EM=\dfrac{30}{7}\left(cm\right)\)
MD+ME=DE
=>MD+30/7=10
=>MD=40/7(cm)
c: Xét ΔDEF có DI là phân giác
nên \(\dfrac{EI}{IF}=\dfrac{ED}{DF}\left(1\right)\)
Xét ΔEDF có MI//DF
nên \(\dfrac{EI}{IF}=\dfrac{ME}{MD}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{ED}{DF}=\dfrac{ME}{MD}\)
a) *CF cắt DE, AB lần lượt tại G,H.
-Xét △CBH có: EG//BH (gt).
\(\Rightarrow\dfrac{EG}{BH}=\dfrac{CG}{CH}\left(1\right)\).(định lí Ta-let)
-Xét △CAH có: GD//AH (gt).
\(\Rightarrow\dfrac{GD}{AH}=\dfrac{CG}{CH}\left(2\right)\).(định lí Ta-let)
-Từ (1) và (2) suy ra: \(\dfrac{EG}{BH}=\dfrac{GD}{AH}=\dfrac{EG+GD}{BH+AH}=\dfrac{DE}{AB}\left(3\right)\).
-Xét △EGF có: EG//AH (gt).
\(\Rightarrow\dfrac{EG}{AH}=\dfrac{EF}{AF}\left(4\right)\).(định lí Ta-let)
-Xét △DGF có: DG//BH (gt).
\(\Rightarrow\dfrac{GD}{BH}=\dfrac{GF}{HF}\left(5\right)\) (định lí Ta-let)
-Xét △EDF có: ED//AB (gt).
\(\Rightarrow\)\(\dfrac{GF}{HF}=\dfrac{EF}{AF}\) (định lí Ta-let) (6)
-Từ (4),(5),(6) suy ra:
\(\dfrac{EG}{AH}=\dfrac{GD}{BH}=\dfrac{EG+GD}{AH+BH}=\dfrac{DE}{AB}\left(7\right)\).
-Từ (3) và (7) suy ra: \(\dfrac{EG}{AH}=\dfrac{EG}{BH}\) hay AH=BH nên H là trung điểm AB.