Phân tích đa thức thành nhân tử (phương pháp thêm bớt)
a) x4 + 64
b) 4x4 + 81
c) x4y4 + 64
Làm từng bước giúp e nhé! E cảm ơn!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)
\(=4a^2b^2-2ab\left(a^2+b^2-c^2\right)+2ab\left(a^2+b^2-c^2\right)-\left(a^2+b^2-c^2\right)^2\)
\(=2ab\left[2ab-\left(a^2+b^2-c^2\right)\right]+\left(a^2+b^2-c^2\right)\left[2ab-\left(a^2+b^2-c^2\right)\right]\)
\(=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)
\(=\left(a^2+ab+ab+b^2-c^2\right)\left[c^2-\left(a^2-ab-ab+b^2\right)\right]\)
\(=\left[a\left(a+b\right)+b\left(a+b\right)-c^2\right]\left[c^2-\left(a\left(a-b\right)-b\left(a-b\right)\right)\right]\)
\(=\left[\left(a+b\right)^2-c^2\right]\left[c^2-\left(a-b\right)^2\right]\)
\(=\left[\left(a+b\right)^2-c\left(a+b\right)+c\left(a+b\right)-c^2\right]\left[c^2+c\left(a-b\right)-c\left(a-b\right)-\left(a-b\right)^2\right]\)
\(=\left[\left(a+b\right)\left(a+b-c\right)+c\left(a+b-c\right)\right]\left[c\left(c+a-b\right)-\left(a-b\right)\left(c+a-b\right)\right]\)
\(=\left(a+b+c\right)\left(a+b-c\right)\left(c+a-b\right)\left(c-a+b\right)\)
a)\(x^4+64=x^4+16x^2+64-16x^2\)
\(=\left(x^2\right)^2+2.x^2.8+8^2-\left(4x\right)^2\)
\(=\left(x^2+8\right)^2-\left(4x\right)^2\)
\(=\left(x^2+8-4x\right)\left(x^2+8+4x\right)\)
b)\(4x^4+81=4x^4+36x^2+81-36x^2\)
\(=\left(2x^2\right)^2+2.2x^2.9+9^2-\left(6x\right)^2\)
\(=\left(2x^2+9\right)^2-\left(6x\right)^2\)
\(=\left(2x^2+9-6x\right)\left(2x^2+9+6x\right)\)
c)\(x^4y^4+64=x^4y^4+16\left(xy\right)^2+64-16\left(xy\right)^2\)
\(=\left[\left(xy\right)^2\right]^2+2.\left(xy\right)^2.8+8^2-\left(8xy\right)^2\)
\(=\left[\left(xy\right)^2+8\right]^2-\left(8xy\right)^2\)
\(=\left[\left(xy\right)^2+8-8xy\right]\left[\left(xy\right)^2+8+8xy\right]\)