1) Tìm STN n để
n + 4 chia hết n - 1
2) Chứng minh
A = n2 + 11n - 10 không chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ai đó giúp mình đi
hu hu hu hu hu
ko ai giúp mình làm cmn bài tập này
nhớ giải theo công thức lớp 6 nha
giúp mình nha
n3 + 11n = n3 - n + 12n = n(n2 - 1) + 12n
= n(n-1)(n+1) + 12n
Vì n; n-1; n+1 là 3 số tự nhiên liên tiếp ( do n là STN )
=> n(n-1)(n+1) chia hết cho 6 (1)
Vì 12 chia hết cho 6 nên 12n chia hết cho 6 (2)
Từ (1) và (2) => n(n-1)(n+1) + 12n chia hết cho 6
=> n3 + 11n chia hết cho 6
n + 4 ⋮ n - 1 (1 ≠ n \(\in\) N)
n - 1 + 5 ⋮ n - 1
5 ⋮ n - 1
n - 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
Lập bảng ta có:
Theo bảng trên ta có n \(\in\) {0; 2; 6}
Vậy n \(\in\) {0; 2; 6}