Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n + 4 ⋮ n - 1 (1 ≠ n \(\in\) N)
n - 1 + 5 ⋮ n - 1
5 ⋮ n - 1
n - 1 \(\in\) Ư(5) = {-5; -1; 1; 5}
Lập bảng ta có:
n - 1 | - 5 | -1 | 1 | 5 |
n | - 4 | 0 | 2 | 6 |
1 ≠ n \(\in\) N | loại | nhận | nhận | nhận |
Theo bảng trên ta có n \(\in\) {0; 2; 6}
Vậy n \(\in\) {0; 2; 6}
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
TH1: Nếu a chia hết cho 3 => Đề bài đúng
TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)
=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng
TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)
=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng
TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)
Bài 5:
Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3
Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2
Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4
Nhưng: 2 không chia hết cho 4
Nên: 4(b+1)+2 không chia hết cho 4
Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4
Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)
a: \(2x+3⋮x-2\)
=>\(2x-4+7⋮x-2\)
=>\(x-2\in\left\{1;-1;7;-7\right\}\)
=>\(x\in\left\{3;1;9;-5\right\}\)
mà x là số tự nhiên
nên \(x\in\left\{1;3;9\right\}\)
b:Cái mệnh đề này sai với n=5 nha bạn
Ai đó giúp mình đi
hu hu hu hu hu
ko ai giúp mình làm cmn bài tập này
nhớ giải theo công thức lớp 6 nha
giúp mình nha