Tìm x biết:
2.(x+5)-x^2-5x=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Answer:
\(3x^2-4x=0\)
\(\Rightarrow x\left(3x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{4}{3}\end{cases}}\)
\(\left(x^2-5x\right)+x-5=0\)
\(\Rightarrow x\left(x-5\right)+\left(x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)
\(x^2-5x+6=0\)
\(\Rightarrow x^2-2x-3x+6=0\)
\(\Rightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\)
\(\Rightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
\(5x\left(x-3\right)-x+3=0\)
\(\Rightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Rightarrow\left(5x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=3\end{cases}}\)
\(x^2-2x+5=0\)
\(\Rightarrow\left(x^2-2x+1\right)+4=0\)
\(\Rightarrow\left(x-1\right)^2=-4\) (Vô lý)
Vậy không có giá trị \(x\) thoả mãn
\(x^2+x-6=0\)
\(\Rightarrow x^2+3x-2x-6=0\)
\(\Rightarrow x.\left(x+3\right)-2\left(x+3\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)
|5\(x\) - 4| = |\(x+2\)|
\(\left[{}\begin{matrix}5x-4=x+2\\5x-4=-x-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}4x=6\\6x=2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
vậy \(x\in\) { \(\dfrac{1}{3};\dfrac{3}{2}\)}
|2\(x\) - 3| - |3\(x\) + 2| = 0
|2\(x\) - 3| = | 3\(x\) + 2|
\(\left[{}\begin{matrix}2x-3=3x+2\\2x-3=-3x-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-5\\x=\dfrac{1}{5}\end{matrix}\right.\)
vậy \(x\in\){ -5; \(\dfrac{1}{5}\)}
a: Ta có: \(x\left(x-3\right)-x^2+5=0\)
\(\Leftrightarrow-3x+5=0\)
hay \(x=\dfrac{5}{3}\)
b: Ta có: \(x^2-6x=0\)
\(\Leftrightarrow x\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)
a) \(\Rightarrow x\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
b) \(\Rightarrow x\left(x^2-4\right)=0\Rightarrow x\left(x-2\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
c) \(\Rightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
d) \(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\Rightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
e) \(\Rightarrow2x^2-10x-3x-2x^2=26\)
\(\Rightarrow-13x=26\Rightarrow x=-2\)
f) \(\Rightarrow\left(x-2012\right)\left(5x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2012\\x=\dfrac{1}{5}\end{matrix}\right.\)
b) \(\Leftrightarrow5x^2-6x+1=0\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow x=\frac{1}{5}\) hoặc x = 1
c) \(\Leftrightarrow x^2+4x-21-x^2-4x+5=0\Leftrightarrow-16=0\) (vô lí) => PT vô nghiệm
d) \(\Leftrightarrow x^2+3x-10=0\Leftrightarrow\left(x-2\right)\left(x+5\right)=0\Leftrightarrow\)x = 2 hoặc x = -5
e) \(\Leftrightarrow x\left(x-2\right)=0\)<=> x = 0 hoặc x = 2
a) \(5x\left(x-1\right)=x-1\)
\(\Rightarrow5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right).\left(5x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)
Vậy \(x=1\) hoặc \(x=\frac{1}{5}\)
b) \(2\left(x+5\right)-x^2-5x\)
\(\Rightarrow2\left(x+5\right)-x\left(x+5\right)\)
\(\Rightarrow\left(x+5\right).\left(2-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)
Vậy \(x=-5\)hoặc \(x=2\)
2(x + 5) - x2 - 5x = 0
<=> 2(x + 5) - (x2 + 5x) = 0
<=> 2(x + 5) - x(x + 5) = 0
<=> (x + 5)(2 - x) = 0
<=> x+5 = 0 hoặc 2-x = 0
<=> x=-5 hoăc x=2
\(2.\left(x+5\right)-x^2-5x=0\)
\(2.\left(x+5\right)-\left(x^2+5x\right)=0\)
\(2.\left(x+5\right)-x.\left(x+5\right)=0\)
\(\left(x+5\right).\left(2-x\right)=0\)
=> \(\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}}\)=> \(\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)
2(x+5)-x2-5x=0
2(x+5)-(x2+5x)=0
2(x+5)-x(x+5)=0
(2-x)(x+5)=0
2-x=0 hoặc x+5=0
x=2 hoặc x=-5