K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2016

p=2 thì cả p và p+3 đều là số nguyên tố

14 tháng 7 2016

ta có:

+) p<3 => p=2 => p+3=5

cả 2 và 5 đều là số nguyên tố(thỏa mãn)

+) p lớn hơn hoặc bằng 3 mà p là số nguyên tố nên p lẻ

=> p+3=lẻ + lẻ= chẵn ko thuộc số nguyên tố(loại)

vậy p=2

Với p=2 ta được p+4=6(hợp số)(Loại)

Với p=3 ta được p+4=7(số nguyên tố),p+8=11(snt)(TM) 

Làm nốt xét p khác 3 nhé!

Trường hợp 1: k=2

\(\Leftrightarrow k=2;k+3=5\)(nhận)

Trường hợp 2: k>2

\(\Leftrightarrow k+3=2k+1+3=2k+4\left(loại\right)\)

8 tháng 9 2021

Trường hợp 1: k=2

⇔k = 2; k + 3 = 5 ⇔ k= 2 ;k + 3 = 5(đúng)

Trường hợp 2: k>2

⇔k + 3 = 2k + 1 + 3 = 2k + 4(loại)

Vậy số p cần tìm là 5

18 tháng 7 2015

b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)

Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3

18 tháng 7 2015

a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố

+) Nếu p > 1 :

p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại

p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại

Vậy p = 1

c) p = 2 => p + 10 = 12 là hợp số => loại

p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn

Nếu p > 3 , p có thể có dạng

+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1

+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2

Vậy p = 3

14 tháng 11 2017

1. 2,3,5,7:2+3+5+7=17(nguyên tố)

2.Có: 2001+2

3.2 và 1:2+1=3(nguyên tố);1.2=2(nguyên tố)

để n+3 và n-4 đều là số nguyên tố, n = 4 (4+3=7; 4-4=0)

5 tháng 7 2023

Gọi số cần tìm là a ( a ∈ N)

Ta có:

a chia 5 dư 1

⇒ a+4 chia hết cho 5

a chia 7 dư 3

⇒ a+4 chia hết cho 7

Mà (5,7) = 1

⇒ a+4 chia hết cho 35

Vì a là số tự nhiên nhỏ nhất 

⇒a+4 = 35

⇒a=35-4

⇒a=31

Vậy số tự nhiên cần tìm là 31

5 tháng 7 2023

          1)Gọi số x là số tự nhiên nhỏ nhất cần tìm, theo đề bài ta có :

x=5a+1 ; x=7b+3

Nên 5a+1=7b+3

5a-7b=2

Ta thấy 5.6-7.4=2

Nên a=6; b=4

Vậy x=31

2) Theo đề bài : p2 + 4 và  p2 - 4 đều là số nguyên tố

⇒ (p2 + 4) và (p2 - 4) ⋮ 1 và chính nó

 ⇒ (p2 + 4) và (p2 - 4) ϵ {1;2;3;5;7;11;13...}

Ta thấy khi (p2 + 4) = 13 và (p2 - 4) = 5 thì p=3

Vậy p=3

12 tháng 4 2018

chỗ x(y+2)-y=3 nhé ko phải =3- đâu

15 tháng 10 2016

Ta có 7 và 11 là số nguyên tố.

=> k = 1

Nếu \(k>1\) thì 7k chia hết cho 7; 7k chia hết cho k. 

<=> 11k chia hết cho 11 và 11k chia hết cho k

Vậy k = 1

25 tháng 11 2017

Ta có 7 và 11 là số nguyên tố.
=> k = 1
Nếu k > 1 thì 7k chia hết cho 7; 7k chia hết cho k.
<=> 11k chia hết cho 11 và 11k chia hết cho k
Vậy k = 1