So sánh số hữu tỉ \(\frac{m}{n}\)(m,n thuộc Z, n khác 0) với 0 biết:
+/ m và n cùng dấu
+/ m và n khác dấu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Nếu a và b cùng dấu thì a/b dương => a/b > 0
+ Nếu a/b khác dấu thì a/b âm => a/b < 0
Khi a;b cùng dấu thì a/b > 0
Khi a;b khác dấu thì a/b < 0
+ Trong trường hợp a,b cùng dấu:
thì a/b >0 Vì thương của hai số nguyên cùng dấu là một số dương.
+ Trong trường hợp a,b khác dấu:
thì a/b>0 Vì thương của hai số nguyên khác dấu là một số âm.
a, ta có:x-y=a/b - c/d
=> x - y = ad-bc/ bd=1/bd mà b,d,n>0=>bd>0=> 1/bd>0
=>x >y(1)
ta lại có y-z =cn-dm/dn=1/dn
mà b,d,n=> dn>0=> 1/dn >0
=>y>z(2)
từ (1) ,(2) =>x>y>z
còn ý b các bạn tự suy nghĩ nhé
chúc các bạn học giỏi
1) Với a, b ∈ Z, b> 0
- Khi a , b cùng dấu thì \(\frac{a}{b}\) > 0
- Khi a,b khác dấu thì \(\frac{a}{b}\)< 0
Tổng quát: Số hữu tỉ \(\frac{a}{b}\) ( a,b ∈ Z, b # 0) dương nếu a,b cùng dấu, âm nếu a, b khác dấu, bằng 0 nếu a = 0
Theo đề bài ta có x = a/m, y = b/m (a, b, m ∈ Z, b # 0)
Vì x < y nên ta suy ra a < b
Ta có: x = 2a/2m, y = 2b/2m; z = (a+b)/2m
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b nên x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) ta suy ra x < z < y
Ta có :
Khi a, b cùng dấu :
Nếu a > 0 và b > 0 suy ra :
Nên : vậy
Nếu a < 0 và b < 0 suy ra :
Nên : vậy
Khi a, b khác dấu :
Nếu a > 0 và b < 0 suy ra :
Nên : vậy
Nếu a < 0 và b > 0 suy ra :
Nên : vậy
a, b cùng dấu thì a/b > 0 ..dễ hiểu thôi nếu cả a, b đều dương thì a/d dĩ nhiên dương, nếu cả a,b đều âm thì a/b cũng dương vì -a/-b = a/b (nhân hai vế với trừ 1)
a, b khác dấu thì a/b luôn âm nên a/b < 0
Ta có:
(+):(+)=(+)
(-):(-)=(+)
(+):(-)=(-)
(-):(+)=(-)
Tự suy ra nhé