Cho tam giác ABC, góc A=50 độ, góc B=80 độ. Tia Bx là tia đối của tia BA. Vẽ tia Bt là tia phân giác của Góc xBC. Chứng tỏ rằng tia Bt song song vs tia AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) có lẽ đề sai. góc xBz phải là 160 độ hoặc góc xAy=70
vì muốn c/m Bt // Ay. ta chững minh góc xBt=góc xAy ( vị trí đồng vị)
Bt là phân giác => góc xBt=1/2 góc xBz => góc xAy=góc xBt=1/2 góc xBz
mà 80 thì không thể =1/2 của 140 đc => đề sai ở một hoặc hai dữ kiện góc
b) góc CBA kề bù với góc xBz => CBA=180-xBz ( sửa đề xong rồi tính nha)
dựa vào định lí tổng ba góc. tam giác ABC: góc A+góc CBA+ góc ACB=180 => ACB=180-xAy-CBA
sửa lỗi của đề rồi ghép vào là xong nha
a) Giả sử Bm // Cn. Khi đó ta có:
\(\widehat{xBm}=\widehat{BCn}\) (hai góc đồng vị) và \(\widehat{BCn}+\widehat{CBm}=180^o\) (hai góc trong cùng phía)
\(\Rightarrow\widehat{xBm}+\widehat{mBC}=\widehat{xBC}=180^o\) (a)
Mà \(\widehat{ABC}\) và \(\widehat{xBC}\) là hai góc kề bù (vì \(\widehat{xBC}\) là góc ngoài đỉnh B)
\(\Rightarrow\widehat{ABC}+\widehat{mBC}=180^o\)
\(\Rightarrow\widehat{mBC}=180^o-\widehat{ABC}\)
\(\Rightarrow\widehat{mBC}< 180^o\) (b)
Từ (a) và (b) suy ra vô lí, suy ra Bm không song song với Cn
Vậy Bm cắt Cn
Xét \(\Delta ABC\) có:
\(\widehat{BAC} + \widehat{B} + \widehat{C} = 180^O\)(Tổng 3 góc của 1 tam giác)
\(80^O + 50^O + \widehat{C} = 180^O\)\((\widehat{BAC} = 80^O(gt); \widehat{B} = 50^O(gt))\)
\(\widehat{C} = 180^O - 80^O - 50^O = 50^O\)
\(\widehat{DAB} = \widehat{B} + \widehat{C}\)(\(\widehat{DAB}\) là góc ngoài tại đỉnh A của \(\Delta ABC\))
\(\widehat{DAB} = 50^O + 50^O = 100^O\)
\(\widehat{DAm} = \frac{1}{2} \widehat{DAB}\)(Am là tia phân giác của \(\widehat {DAB} \) (gt))
\(\widehat{DAm} = \frac{1}{2} . 100^O = 50^O\)
\(\Rightarrow\)\(\widehat{DAm} = \widehat{ADE}\)
mà 2 góc này nằm ở vị trí so le trong
\(\Rightarrow\)\(DE//AM (dpcm)\)
b) Ta có:
\(DE//AM (cmt)\)
\(DE//BC\) (2 góc so le trong)
\(\Rightarrow\)\(BC//AM\)(định lí 3 trong bài từ vuông góc đến song song)