giải fft : \(\sqrt{2x^2+7x+10}+\sqrt{2x^2+x+4}=3\times\left(x+1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\hept{\begin{cases}\sqrt{2x^2+7x+10}=a\left(a>0\right)\\\sqrt{2x^2+x+4}=b\left(b>0\right)\end{cases}}\)
Ta có \(a^2-b^2=6x+6\)
Từ đó PT ban đầu thành
\(a+b=\frac{a^2-b^2}{2}\)
\(\Leftrightarrow2\left(a+b\right)-\left(a^2-b^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(2-a+b\right)=0\)
\(\Leftrightarrow a=2+b\)
\(\Leftrightarrow\sqrt{2x^2+7x+10}=2+\sqrt{2x^2+x+4}\)
\(\Leftrightarrow3x+1=2\sqrt{2x^2+x+4}\)
\(\Leftrightarrow x^2+2x-15=0\)
\(\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)
Đặt \(\sqrt{2x^2+7x+10}=a;\sqrt{2x^2+x+4}=b\left(a,b>0\right)\)
pt <=> a + b = 3(x + 1)
Mà a2 - b2 = 2x2 + 7x + 10 - 2x2 - x - 4 = 6x + 6
nên pt <=> a + b = \(\dfrac{a^2-b^2}{2}\)
<=> (a - b)(a + b) = 2(a + b)
Vì a;b > 0 nên a + b khác 0. Chia cả 2 vế của pt cho a + b ta có
pt <=> a - b = 2
<=> \(\sqrt{2x^2+7x+10}-\sqrt{2x^2+x+4}=2\)
<=> \(\sqrt{2x^2+7x+10}=2+\sqrt{2x^2+x+4}\)
Bình phương 2 vế ta có:
pt <=> \(2x^2+7x+10=2x^2+x+8+8\sqrt{2x^2+x+4}\)
<=> \(3x+1=4\sqrt{2x^2+x+4}\)
Bình phương lần nữa rồi làm nốt, làm xong thì thử lại.
Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)
Câu 1:
ĐK: \(x\geq -2\)
Đặt \(\sqrt{x+5}=a; \sqrt{x+2}=b(a,b\geq 0)\)
\(\Rightarrow ab=\sqrt{(x+5)(x+2)}=\sqrt{x^2+7x+10}\)
PT trở thành:
\((a-b)(1+ab)=3\)
\(\Leftrightarrow (a-b)(1+ab)=(x+5)-(x+2)=a^2-b^2\)
\(\Leftrightarrow (a-b)(1+ab)-(a-b)(a+b)=0\)
\(\Leftrightarrow (a-b)(1+ab-a-b)=0\)
\(\Leftrightarrow (a-b)(a-1)(b-1)=0\)
Vì \(a\neq b\Rightarrow \left[\begin{matrix} a-1=0\\ b-1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} a=\sqrt{x+5}=1\\ b=\sqrt{x+2}=1\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=-4\\ x=-1\end{matrix}\right.\). Vì $x\geq -2$ nên chỉ có $x=-1$ là nghiệm duy nhất.
Câu 2:
ĐK: \(-4\leq x\leq 4\)
Ta có: \((\sqrt{x+4}-2)(\sqrt{4-x}+2)=2x\)
\(\Leftrightarrow \frac{(x+4)-2^2}{\sqrt{x+4}+2}.(\sqrt{4-x}+2)=2x\)
\(\Leftrightarrow x.\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}=2x\)
\(\Leftrightarrow x\left(\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}-2\right)=0\)
\(\Rightarrow \left[\begin{matrix} x=0\\ \sqrt{4-x}+2=2\sqrt{x+4}+4(*)\end{matrix}\right.\)
Xét $(*)$
Đặt \(\sqrt{4-x}=a; \sqrt{x+4}=b\) thì ta có hệ:
\(\left\{\begin{matrix} a^2+b^2=8\\ a+2=2b+4\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a^2+b^2=8\\ a=2(b+1)\end{matrix}\right.\)
\(\Rightarrow 4(b+1)^2+b^2=8\)
\(\Leftrightarrow 5b^2+8b-4=0\Leftrightarrow (5b-2)(b+2)=0\)
\(\Rightarrow b=\frac{2}{5}\) (do \(b\geq 0)\)
\(\Rightarrow x+4=b^2=\frac{4}{25}\Rightarrow x=\frac{-96}{25}\) (t/m)
Vậy \(x\in \left\{ \frac{-96}{25}; 0\right\}\)
1.
\(\Leftrightarrow\left(2x+1\right)\sqrt{2x^2+4x+5}-\left(2x+1\right)\left(x+3\right)+x^2-2x-4=0\)
\(\Leftrightarrow\left(2x+1\right)\left(\sqrt{2x^2+4x+5}-\left(x+3\right)\right)+x^2-2x-4=0\)
\(\Leftrightarrow\dfrac{\left(2x+1\right)\left(x^2-2x-4\right)}{\sqrt{2x^2+4x+5}+x+3}+x^2-2x-4=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\\dfrac{2x+1}{\sqrt{2x^2+4x+5}+x+3}+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow2x+1+\sqrt{2x^2+4x+5}+x+3=0\)
\(\Leftrightarrow\sqrt{2x^2+4x+5}=-3x-4\) \(\left(x\le-\dfrac{4}{3}\right)\)
\(\Leftrightarrow2x^2+4x+5=9x^2+24x+16\)
\(\Leftrightarrow7x^2+20x+11=0\)
2.
ĐKXĐ: ...
\(\Leftrightarrow2x\sqrt{2x+7}+7\sqrt{2x+7}=x^2+2x+7+7x\)
\(\Leftrightarrow\left(x^2-2x\sqrt{2x+7}+2x+7\right)+7\left(x-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)^2+7\left(x-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{2x+7}\right)\left(x+7-\sqrt{2x+7}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2x+7}\\x+7=\sqrt{2x+7}\end{matrix}\right.\)
\(\Leftrightarrow...\)
Ta có: \(\sqrt{2x^2+7x+10}+\sqrt{2x^2+x+4}=3x+3\)
\(\Rightarrow\sqrt{2x^2+7x+10}+\sqrt{2x^2+x+4}-3x-3=0\)
\(\Rightarrow\sqrt{2x^2+7x+10}-7+\sqrt{2x^2+x+4}-5-3x+9=0\)
\(\Rightarrow\frac{2x^2+7x+10-49}{\sqrt{2x^2+7x+10}+7}+\frac{2x^2+x+4-25}{\sqrt{2x^2+x+4}+5}-3\left(x-3\right)=0\)
\(\Rightarrow\frac{\left(x-3\right)\left(2x+13\right)}{\sqrt{2x^2+7x+10}+7}+\frac{\left(x-3\right)\left(2x+7\right)}{\sqrt{2x^2+x+4}+5}-3\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(\frac{2x+13}{\sqrt{2x^2+7x+10}+7}+\frac{2x+7}{\sqrt{2x^2+x+4}+5}-3\right)=0\)
mà \(\frac{2x+13}{\sqrt{2x^2+7x+10}+7}+\frac{2x+7}{\sqrt{2x^2+x+4}}-3< 0\)
=> x - 3 = 0 => x = 3
Vậy x = 3
dân dương ơi bài này dễ mà nhân liên hợp là ok