K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2016

Ta có: \(\sqrt{2x^2+7x+10}+\sqrt{2x^2+x+4}=3x+3\)

\(\Rightarrow\sqrt{2x^2+7x+10}+\sqrt{2x^2+x+4}-3x-3=0\)

\(\Rightarrow\sqrt{2x^2+7x+10}-7+\sqrt{2x^2+x+4}-5-3x+9=0\)

\(\Rightarrow\frac{2x^2+7x+10-49}{\sqrt{2x^2+7x+10}+7}+\frac{2x^2+x+4-25}{\sqrt{2x^2+x+4}+5}-3\left(x-3\right)=0\)

\(\Rightarrow\frac{\left(x-3\right)\left(2x+13\right)}{\sqrt{2x^2+7x+10}+7}+\frac{\left(x-3\right)\left(2x+7\right)}{\sqrt{2x^2+x+4}+5}-3\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(\frac{2x+13}{\sqrt{2x^2+7x+10}+7}+\frac{2x+7}{\sqrt{2x^2+x+4}+5}-3\right)=0\)

mà \(\frac{2x+13}{\sqrt{2x^2+7x+10}+7}+\frac{2x+7}{\sqrt{2x^2+x+4}}-3< 0\)

=> x - 3 = 0 => x = 3

                                                              Vậy x = 3

8 tháng 7 2016

dân dương ơi bài này dễ mà nhân liên hợp là ok 

AH
Akai Haruma
Giáo viên
24 tháng 10 2018

Câu 1:

ĐK: \(x\geq -2\)

Đặt \(\sqrt{x+5}=a; \sqrt{x+2}=b(a,b\geq 0)\)

\(\Rightarrow ab=\sqrt{(x+5)(x+2)}=\sqrt{x^2+7x+10}\)

PT trở thành:

\((a-b)(1+ab)=3\)

\(\Leftrightarrow (a-b)(1+ab)=(x+5)-(x+2)=a^2-b^2\)

\(\Leftrightarrow (a-b)(1+ab)-(a-b)(a+b)=0\)

\(\Leftrightarrow (a-b)(1+ab-a-b)=0\)

\(\Leftrightarrow (a-b)(a-1)(b-1)=0\)

\(a\neq b\Rightarrow \left[\begin{matrix} a-1=0\\ b-1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} a=\sqrt{x+5}=1\\ b=\sqrt{x+2}=1\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=-4\\ x=-1\end{matrix}\right.\). Vì $x\geq -2$ nên chỉ có $x=-1$ là nghiệm duy nhất.

AH
Akai Haruma
Giáo viên
24 tháng 10 2018

Câu 2:

ĐK: \(-4\leq x\leq 4\)

Ta có: \((\sqrt{x+4}-2)(\sqrt{4-x}+2)=2x\)

\(\Leftrightarrow \frac{(x+4)-2^2}{\sqrt{x+4}+2}.(\sqrt{4-x}+2)=2x\)

\(\Leftrightarrow x.\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}=2x\)

\(\Leftrightarrow x\left(\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}-2\right)=0\)

\(\Rightarrow \left[\begin{matrix} x=0\\ \sqrt{4-x}+2=2\sqrt{x+4}+4(*)\end{matrix}\right.\)

Xét $(*)$

Đặt \(\sqrt{4-x}=a; \sqrt{x+4}=b\) thì ta có hệ:

\(\left\{\begin{matrix} a^2+b^2=8\\ a+2=2b+4\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a^2+b^2=8\\ a=2(b+1)\end{matrix}\right.\)

\(\Rightarrow 4(b+1)^2+b^2=8\)

\(\Leftrightarrow 5b^2+8b-4=0\Leftrightarrow (5b-2)(b+2)=0\)

\(\Rightarrow b=\frac{2}{5}\) (do \(b\geq 0)\)

\(\Rightarrow x+4=b^2=\frac{4}{25}\Rightarrow x=\frac{-96}{25}\) (t/m)

Vậy \(x\in \left\{ \frac{-96}{25}; 0\right\}\)

8 tháng 10 2016

Đặt \(\hept{\begin{cases}\sqrt{2x^2+7x+10}=a\left(a>0\right)\\\sqrt{2x^2+x+4}=b\left(b>0\right)\end{cases}}\)

Ta có \(a^2-b^2=6x+6\)

Từ đó PT ban đầu thành 

\(a+b=\frac{a^2-b^2}{2}\)

\(\Leftrightarrow2\left(a+b\right)-\left(a^2-b^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(2-a+b\right)=0\)

\(\Leftrightarrow a=2+b\)

\(\Leftrightarrow\sqrt{2x^2+7x+10}=2+\sqrt{2x^2+x+4}\)

\(\Leftrightarrow3x+1=2\sqrt{2x^2+x+4}\)

\(\Leftrightarrow x^2+2x-15=0\)

\(\orbr{\begin{cases}x=3\\x=-5\end{cases}}\)

22 tháng 9 2017

Đặt \(\sqrt{2x^2+7x+10}=a;\sqrt{2x^2+x+4}=b\left(a,b>0\right)\)

pt <=> a + b = 3(x + 1)

Mà a2 - b2 = 2x2 + 7x + 10 - 2x2 - x - 4 = 6x + 6

nên pt <=> a + b = \(\dfrac{a^2-b^2}{2}\)

<=> (a - b)(a + b) = 2(a + b)

Vì a;b > 0 nên a + b khác 0. Chia cả 2 vế của pt cho a + b ta có

pt <=> a - b = 2

<=> \(\sqrt{2x^2+7x+10}-\sqrt{2x^2+x+4}=2\)

<=> \(\sqrt{2x^2+7x+10}=2+\sqrt{2x^2+x+4}\)

Bình phương 2 vế ta có:

pt <=> \(2x^2+7x+10=2x^2+x+8+8\sqrt{2x^2+x+4}\)

<=> \(3x+1=4\sqrt{2x^2+x+4}\)

Bình phương lần nữa rồi làm nốt, làm xong thì thử lại.

23 tháng 9 2017

Like tặng Hải 1 phát :)

13 tháng 7 2017

a) ĐK: x>=-2

=> \(\sqrt{x+5}+\sqrt{x+2}>0\)

Nhân liên hợp:

\(\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(\sqrt{x+5}-\sqrt{x+2}\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)

<=> \(\left(x+5-x-2\right)\left(1+\sqrt{x^2+7x+10}\right)=3\)

<=> \(3\left(1+\sqrt{x^2+7x+10}\right)=3\)

<=>1+\(\sqrt{\left(x+5\right)\left(x+2\right)}=1\)

<=> \(\sqrt{\left(x+5\right)\left(x+2\right)}=0\)

<=> (x+5) (x+2) =0

<=> x=-5 hoac x=-2

-Do x>= -2.

Vay x=-2

12 tháng 7 2017

giải gấp hộ mk với

9 tháng 8 2017

1. \(x^4-x^2+3x+5=2\sqrt{x+1}\) ĐK: \(x\ge-1\)

\(\Leftrightarrow\left(x^4-x^2+2x+2\right)+\left(x+1-2\sqrt{x+1}+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x^2-2x+2\right)+\left(\sqrt{x}-1\right)^2=0\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)^2\left[\left(\sqrt{x}+1\right)^2\left(x^2-2x+2\right)+1\right]=0\)

Dễ thấy \(\left(\sqrt{x}+1\right)^2\left(x^2-2x+2\right)+1>0\)

Vậy x =1

3. ĐK: \(x\ge-2\)

Đặt \(\left\{{}\begin{matrix}a=\sqrt{x+5}\ge0\\b=\sqrt{x+2}\ge0\end{matrix}\right.\)

pt trên được viết lại thành

\(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)

\(\Leftrightarrow\left(a-b\right)\left(1+ab-a-b\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=1\\b=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=\sqrt{x+2}\\\sqrt{x+5}=1\\\sqrt{x+2}=1\end{matrix}\right.\)

Đến đây thì dễ rồi nhé

9 tháng 8 2017

Phương Thảo bn xem thử đề câu 2 có phải là

\(\sqrt{x^2+x}+\sqrt{x-x^2}=x+1\)??????

28 tháng 11 2019

Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen

help me, pleaseee

Cần gấp lắm ạ!