\(\frac{3}{10}+\frac{7}{10}=\frac{?}{?}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/10 A =7/10^2+7/10^3+..............+7/10^2020
9/10*A=(7/10+7/10^2+......................+7/10^2019)-(7/10^2+7/10^3+........+7/10^2020)
=7/10-7/10^2020
A=10/9 .(7/10-7/10^2020)
= \(\frac{5\times\left(\frac{1}{7}+\frac{1}{3}-\frac{1}{9}\right)}{10\times\left(\frac{1}{7}+\frac{1}{3}-\frac{1}{9}\right)}\)
=\(\frac{5}{10}\)
=\(\frac{1}{2}\)
đặt \(A=\frac{7}{10}+\frac{7}{10^2}+\frac{7}{10^3}+\frac{7}{10^4}\)
\(A=7.\left(\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^3}+\frac{1}{10^4}\right)\)
Lại đặt \(B=\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^3}+\frac{1}{10^4}\)
\(10B=1+\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^3}\)
\(10B-B=\left(1+\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^3}\right)-\left(\frac{1}{10}+\frac{1}{10^2}+\frac{1}{10^3}+\frac{1}{10^4}\right)\)
\(9B=1-\frac{1}{10^4}\)
\(\Rightarrow B=\frac{1-\frac{1}{10^4}}{9}\)
\(\Rightarrow A=7.\frac{1-\frac{1}{10^4}}{9}=\frac{7.\left(1-\frac{1}{10^4}\right)}{9}\)
\(=\frac{1+2+3+4+5+6+7+8+9}{10}\)
\(=\frac{45}{10}=\frac{9}{2}\)
\(A=\frac{155-\frac{10}{7}-\frac{5}{11}+\frac{5}{23}}{403-\frac{26}{7}-\frac{13}{11}+\frac{13}{23}}+\frac{\frac{3}{5}+\frac{3}{13}-0,9}{\frac{7}{91}+0,2-\frac{3}{10}}\)
\(A=\frac{5.31-\frac{5.2}{7}-\frac{5}{11}+\frac{5}{23}}{13.31-\frac{13.2}{7}-\frac{13}{11}+\frac{13}{23}}+\frac{\frac{3}{5}+\frac{3}{13}-\frac{9}{10}}{\frac{1}{13}+\frac{1}{5}-\frac{3}{10}}\)
\(A=\frac{5.31-\frac{5.2}{7}-\frac{5}{11}+\frac{5}{23}}{13.31-\frac{13.2}{7}-\frac{13}{11}+\frac{13}{23}}+\frac{\frac{3}{5}+\frac{3}{13}-\frac{9}{10}}{\frac{1}{5}+\frac{1}{13}-\frac{3}{10}}\)
\(A=\frac{5}{13}+\frac{1}{3}=\frac{44}{13}\)
Bạn tham khảo nhé
Ta có :
\(A=\frac{155-\frac{10}{7}-\frac{5}{11}+\frac{5}{23}}{403-\frac{26}{7}-\frac{13}{11}+\frac{13}{23}}+\frac{\frac{3}{5}+\frac{3}{13}-0,9}{\frac{7}{91}+0,2-\frac{3}{10}}\)
\(A=\frac{5.31-5.\frac{2}{7}-5.\frac{1}{11}+5.\frac{1}{23}}{13.31-13.\frac{2}{7}-13.\frac{1}{11}+13.\frac{1}{23}}+\frac{3.\frac{1}{5}+3.\frac{1}{13}-3.\frac{3}{10}}{\frac{1}{13}+\frac{1}{5}-\frac{3}{10}}\)
\(A=\frac{5\left(31-\frac{2}{7}-\frac{1}{11}+\frac{1}{23}\right)}{13\left(31-\frac{2}{7}-\frac{1}{11}+\frac{1}{23}\right)}+\frac{3\left(\frac{1}{5}+\frac{1}{13}-\frac{3}{10}\right)}{\frac{1}{5}+\frac{1}{13}-\frac{3}{10}}\)
\(A=\frac{5}{13}+\frac{3}{1}=\frac{5}{13}+\frac{39}{13}=\frac{44}{13}\)
Vậy \(A=\frac{44}{13}\)
\(\frac{3}{10}+\frac{7}{10}=\frac{3+7}{10}=\frac{10}{10}=1\)
3/10+7/10=10/10=1 nhé bạn