tìm x,a,b biet x+3=2a và 3x+1=4b với x,a,b nguyen duong
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay x=1 vào phương trình ta có:
\(\left(1-3a+1\right)\left(3+2a-5\right)=0\)
\(\Leftrightarrow\left(-3a+2\right)\left(2a-2\right)=0\)
\(\Leftrightarrow\left[\begin{matrix}-3a+2=0\\2a-2=0\end{matrix}\right.\left[\begin{matrix}a=\dfrac{2}{3}\\a=1\end{matrix}\right.\)
TH1: \(a=\dfrac{2}{3}\)
\(\Rightarrow\left(x-3.\dfrac{2}{3}+1\right)\left(3x+2.\dfrac{2}{3}-5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x-\dfrac{11}{3}\right)=0\Leftrightarrow\left[\begin{matrix}x-1=0\\3x-\dfrac{11}{3}=0\end{matrix}\right.\left[\begin{matrix}x=1\\x=\dfrac{11}{9}\end{matrix}\right.\)
TH2:a=1
\(\Leftrightarrow\left(x-3+1\right)\left(3x+2-5\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(3x-3\right)=0\Leftrightarrow\left[\begin{matrix}x=2\\x=1\end{matrix}\right.\)
\(\lim\limits_{x\rightarrow-\infty}\dfrac{2x^2-\left(2x^2-3x+1\right)}{x\sqrt{2}-\sqrt{2x^2-3x+1}}=\lim\limits_{x\rightarrow-\infty}\dfrac{3x-1}{x\sqrt{2}-\sqrt{2x^2-3x+1}}\)
\(=\lim\limits_{x\rightarrow-\infty}\dfrac{3-\dfrac{1}{x}}{\sqrt{2}+\sqrt{2-\dfrac{3}{x}+\dfrac{1}{x^2}}}=\dfrac{3}{2\sqrt{2}}=\dfrac{3}{4}\sqrt{2}\)
\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=4\end{matrix}\right.\)
\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{2x^2-3x+1}+x\sqrt{2}\right)=+\infty\) nên chắc chắn đề bài sai
Đề đúng sẽ là: \(x\rightarrow-\infty\) hoặc \(x\rightarrow+\infty\) thì biểu thức là \(\sqrt{2x^2-3x+1}-x\sqrt{2}\)
b. Câu hỏi của Phạm Thị Thùy Linh - Toán lớp 8 - Học toán với OnlineMath
\(a^2-2a+b^2+4b+4c^2-4c+6=0\)'
\(\left(a^2-2a+1\right)+\left(b^2+4b+4\right)+\left(4c^2-4c+1\right)=0\)
\(\left(a-1\right)^2+\left(b+2\right)^2+\left(2c-1\right)^2=0\)
b tự làm nốt nhé~
\(M=\left(x+3\right)\left(x^2-3x+9\right)-\left(x^3+54-x\right)\)
\(M=x^3+3^3-x^3-54+x\)
\(M=x+27-54\)
\(M=x+27-54\)
\(M=7-27\)
\(M=-20\)
\(A=\dfrac{x-4+5}{\sqrt{x}-2}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+5}{\sqrt{x}-2}=\sqrt{x}+2+\dfrac{5}{\sqrt{x}-2}\)
\(=\sqrt{x}-2+\dfrac{5}{\sqrt{x}-2}+4\ge2\sqrt{\dfrac{5\left(\sqrt{x}-2\right)}{\sqrt{x}-2}}+4=4+2\sqrt{5}\)
\(A_{min}=4+2\sqrt{5}\) khi \(9+4\sqrt{5}\)
b.
Đặt \(\left(a;b;c\right)=\left(\dfrac{1}{x};\dfrac{1}{y};\dfrac{l}{z}\right)\Rightarrow xyz=1\)
\(B=\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}\ge\dfrac{3\sqrt[3]{xyz}}{2}=\dfrac{3}{2}\)
\(B_{min}=\dfrac{3}{2}\) khi \(x=y=z=1\Rightarrow a=b=c=1\)