tìm một số tự nhiên có hai chữ số biết rằng số đó có chữ số hàng đơn vị kém chữ số hàng chục là 7 đơn vị đồng thời số đó bằng bình phương của tổng hai chữ số của nó
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số cần tìm là ab
Theo đề, ta có: a-b=7 và 10a+b=(a+b)^2
=>a=7+b và 10(b+7)+b=(2b+7)^2
=>4b^2+28b+49-11b-70=0 và a=b+7
=>b=1 và a=8
Gọi số tự nhiên cần tìm là \(\overline{ab}\left(a,b\in N;a\ne0\right)\)
Ta có \(b=a-7\)
Mặt khác: \(\overline{ab}=\left(a+b\right)^2\Rightarrow10a+b=\left(a+a-7\right)^2\)
\(\Rightarrow11a-7=\left(2a-7\right)^2\Rightarrow11a-7=4a^2-28a+49\)
\(\Rightarrow4a^2-39a+56=0\Rightarrow\left[{}\begin{matrix}a=1,75\left(L\right)\\a=8\left(TM\right)\end{matrix}\right.\)
Vậy số cần tìm là 81.
gọi chữ số hàng đơn vị là x
=> chữ số hàng chục là x-4
(x-4)^2 +x^2 =80
=> x=8 hoặc x=-4 (loại)
=> số đó là 48
Lời giải:
Gọi số cần tìm là $\overline{ab}$. ĐK: $a\neq 0; a,b\in\mathbb{N}; a,b\leq 9$
Theo bài ra ta có:
$a+4=b(1)$
$a^2+b^2=80(2)$
Thay $(1)$ vào $(2)$ thì:
$a^2+(a+4)^2=80$
$2a^2+8a+16=80$
$a^2+4a-32=0$
$\Leftrightarrow (a-4)(a+8)=0$
Vì $a\in\mathbb{N}$ nên $a=4$
$b=a+4=8$
Vậy số cần tìm là $48$
Gọi số cần tìm là ab (a,b là chữ số ;a khác 0)
Theo đề bài a - b = 2 => a = b + 2
và ab - a2 - b2 = 1
=> 10a + b - (b + 2)2 - b2 = 1
=> 10b + 20 + b - b2 + 4b + 4 - b2 = 1
=> 15b + 24 - 2b2 = 1
=> b.(15 - 2b) = -23
=> b \(\in\) Ư(-23) = {-23; -1; 1; 23}
- Nếu b = -23 thì 15 - 2b = 61 (loại)
- Nếu b = -1 thì 15 - 2b = 17 (loại)
- Nếu b = 1 thì 15 - 2b = 13 (loại)
- Nếu b = 23 thì 15 - 2b = -31 (loại)
Vậy không tìm được số thỏa mãn đề bài
Gọi chữ số hàng đơn vị là a thì chữ số hàng chục là a + 2
Ta có số (a+2)a
Theo bài cho ta có:
=> (a+2)a = a2 + (a+2)2 + 1
=> 10(a+2) + a = a2 + a2 + 4a + 5
=> 11a + 20 = 2a2 + 4a + 5
=> 2a2 -7a+ 5 = 0
=> 2a2 - 2a - 5a + 5 = 0
=> 2a(a - 1) - 5(a - 1) = 0
=> (2a - 5)(a - 1) = 0
=> a - 1 = 0 hoặc 2a - 5 = 0
=> a = 1 (thỏa mãn) hoặc a = 5/2 (Loại)
Vậy số cần tìm là 31
Giai pt này bằng pp thế\(\hept{\begin{cases}a-b=2\\10a+b-\left(a^2+b^2\right)=1\end{cases}}\)
Ta sẽ có kết quả số cần tìm là 75