a) A= 2,86.4 + 3,14.4 -6,01.5 +32 mũ 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,
\(\begin{array}{l}2,5.\left( {4,1 - 3 - 2,5 + 2.7,2} \right) + 4,2:2\\ = 2,5.\left( {4,1 - 3 - 2,5 + 14,4} \right) + 4,2:2\\ = 2,5.\left( {1,1 - 2,5 + 14,4} \right) + 2,1\\ = 2,5.\left( { - 1,4 + 14,4} \right) + 2,1\\ = 2,5.13 + 2,1\\ = 32,5 + 2,1\\ = 34,6\end{array}\)
2,
Cách 1:
\(\begin{array}{l}2,86.4 + 3,14.4 - 6,01.5 + {3^2}\\ = 11,44 + 12,56 - 30,05 + 9\\ = \left( {11,44 + 12,56} \right) + \left( { - 30,05 + 9} \right)\\ = 24 + \left( { - 21,05} \right)\\ = 24 - 21,05\\ = 2,95\end{array}\)
Cách 2:
\(\begin{array}{l}2,86.4 + 3,14.4 - 6,01.5 + {3^2}\\ = 4.(2,86+3,14) - 30,05 + 9\\ = 4.6 + \left( { - 30,05 + 9} \right)\\ = 24 + \left( { - 21,05} \right)\\ = 24 - 21,05\\ = 2,95\end{array}\)
\(2023A=\dfrac{2023^{31}+4046}{2023^{31}+2}=1+\dfrac{4044}{2023^{31}+2}\)
\(2023B=\dfrac{2023^{32}+4046}{2023^{32}+2}=1+\dfrac{4044}{2023^{32}+2}\)
mà 2023^31+2<2023^32+2
nên A>B
Bài 1: a) \(M=1+5+5^2+...+5^{100}\)
\(5M=5+5^2+5^3+...+5^{101}\)
\(5M-M=\left(5+5^2+5^3+...+5^{101}\right)-\left(1+5+5^2+...+5^{100}\right)\)
\(4M=5^{101}-1\)
\(M=\frac{5^{101}-1}{4}\)
b) \(N=2+2^2+...+2^{100}\)
\(2N=2^2+2^3+...+2^{101}\)
\(2N-N=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(N=2^{101}-2\)
Bài 2:
a) \(16^{32}=\left(2^4\right)^{32}=2^{128}\)
\(32^{16}=\left(2^5\right)^{16}=2^{80}\)
Vì \(2^{128}>2^{80}\Rightarrow16^{32}>32^{16}\)
Ta có:\(8^{12}=\left(2^3\right)^{12}=2^{3.12}=2^{36}\\ \\ \\ 32^6=\left(2^5\right)^6=2^{5.6}=2^{30}\) Mà \(2^{36}>2^{30}\)
⇒ Chọn A
812 = (23)12 = 236
326 = (25)6 = 230
Vì 236 > 330 ⇒ 812 > 326 ⇒ Chọn A
TL:
a.\(2^6.2^n=2^{11}\)
\(2^{6+n}=2^{11}\)
\(\Rightarrow n=5\)
b. \(3^7:3^n=3^4\)
\(3^{7-n}=3^4\)
\(\Rightarrow n=3\)
c.\(2^n.32=2^{10}\)
\(2^{n+5}=2^{10}\)
\(\Rightarrow n=5\)
\(32^{15}=\left(2^5\right)^{15}=2^{5.15}=2^{75}\)
\(4^{39}=\left(2^2\right)^{39}=2^{2.39}=2^{78}\)
Do \(2^{78}>2^{75}\)
\(\Rightarrow4^{39}>32^{15}\)
\(\Rightarrow1+4+4^2+...+4^{39}>32^{15}\)
\(\Rightarrow3\left(1+4+4^2+...+4^{39}\right)>32^{15}\)
Vậy \(A>B\)
\(A=11,44+12,56-30,05+1024\)
\(=24-30,56+1024\)
\(=-6,05+1024\)
\(=1017,95\)