cho hình chữ nhật ABCD có AB=8cm,BC=6cm.Kẻ AH vuông góc với đường chéo BD (H thuộc BD).Chứng minh rằng:
a,tam giác AHB đồng dạng tam giác DAB
b,AD2=DH.AC
c,Tính độ dài DH và HB
xin mọi người giúp mình với cảm ơn rất nhiều ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔAHB vuông ạti H và ΔDAB vuông tại A có
góc DBA chung
=>ΔAHB đồng dạng với ΔDAB
b: ΔABD vuông tại A có AH vuông góc BD
nên AD^2=DH*BD=DH*AC
a) Ta có :
AD = BC = 6 cm
Áp dụng hệ thức lượng trong tam giác ABD vuông tại A, ta có :
1/AD^2 + 1/AB^2 = 1/AH^2
<=> 1/6^2 + 1/8^2 = 1/AH^2
<=> AH = 4,8(cm)
b)
Áp dụng Pitago trong tam giác BCD vuông tại C có :
BC^2 + CD^2 = BD^2
<=> 6^2 + 8^2 = DB^2
<=> BD = 10(cm)
Xét hai tam giác vuông AHB và BCD có :
AH/BC = 4,8/6 = 4/5
AB/BD = 8/10 = 4/5
Do đó tam giác AHB đồng dạng với tam giác BCD
a: BD=10cm
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔADH\(\sim\)ΔBDA
c: Xét ΔABD vuông tại A có AH là đường cao
nên \(AD^2=DH\cdot DB\)
a) Xét ΔHAD và ΔABD ta có:
\(\widehat{D}\) chung
\(\widehat{DAB}=\widehat{DHA}=90^0\)
⇒ΔHAD ∼ ΔABD (g.g)(1)
b) Xét ΔHBA và ΔABD ta có:
\(\widehat{B}\) chung
\(\widehat{AHB}=\widehat{DAB}=90^0\)
→ΔHBA ∼ ΔABD (g.g)(2)
Từ (1) và (2) →ΔHAD∼ΔHBA
\(\rightarrow\dfrac{AD}{DH}=\dfrac{HB}{AD}\\ \rightarrow AD.AD=DH.HB\\\Rightarrow AD^2=DH.HB\)
c) Xét ΔABD vuông tại A ta có:
\(BD^2=AB^2+AD^2\)
\(=8^2+6^2\)
\(=100\)
\(\Rightarrow BD=\sqrt{100}=10\left(cm\right)\)
Vì ΔΔHAD ∼ ΔABD (cmt)
\(\rightarrow\dfrac{AD}{DH}=\dfrac{AB}{AH}=\dfrac{BD}{AD}hay\dfrac{6}{DH}=\dfrac{8}{AH}=\dfrac{10}{6}=\dfrac{5}{3}\\ \Rightarrow DH=\dfrac{6.3}{5}=3,6\left(cm\right)\\ \Rightarrow AH=\dfrac{8.3}{5}=4,8\left(cm\right)\)
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)
Do đó: ΔAHB\(\sim\)ΔBCD
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔADH\(\sim\)ΔBDA
Suy ra: \(\dfrac{AD}{BD}=\dfrac{HD}{DA}\)
hay \(AD^2=HD\cdot BD\)
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
Do đó: ΔAHBΔBCD
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
chung
Do đó: ΔADHΔBDA
Suy ra:
hay
a) Xét hình chữ nhật ABCD có:
AB//CD => \(\widehat{ABH}=\widehat{BDC}\) (2 góc so le trong)
Xét tam giác AHB và tam giác BCD có:
\(\widehat{ABH}=\widehat{BDC}\left(cmt\right)\)
\(\widehat{AHB}=\widehat{BCD}=90^0\)
=> \(\Delta AHB\sim\Delta BCD\left(g.g\right)\)
b) Xét tam giác ADH và tam giác BDA có:
\(\widehat{ADB}\) chung
\(\widehat{AHD}=\widehat{BAD}=90^0\)
\(\Rightarrow\Delta ADH\sim\Delta BDA\left(g.g\right)\)
\(\Rightarrow\dfrac{AD}{DH}=\dfrac{DB}{AD}\Rightarrow AD^2=DH.DB\)
c) Xét tam giác BDC vuông tại C có:
\(BD^2=BC^2+DC^2\) (Định lý Pytago)\(\Rightarrow BD=\sqrt{BC^2+CD^2}=\sqrt{6^2+8^2}=10\left(cm\right)\)
Ta có: \(AD^2=DH.DB\left(cmt\right)\Rightarrow DH=\dfrac{AD^2}{DB}=\dfrac{6^2}{10}=3,6\left(cm\right)\)
Xét tam giác ADH vuông tại H có:
\(AD^2=AH^2+DH^2\)( định lý Pytago)
\(\Rightarrow AH=\sqrt{AD^2-DH^2}=\sqrt{6^2-3,6^2}=4,8\left(cm\right)\)
a) ta giác AHB và tam giác DAB có :
góc A= góc H (=90\(^0\))
Góc B:chung
=> tam giác AHB ~ tam giác DAB (g-g)
b) tam giác AHD và tam giác ABD có :
góc H= góc BAD (=90\(^0\))
góc D:chung
=> tam giác AHD ~ tam giác ABD (g-g)
=>\(\frac{DA}{DB}\)=\(\frac{HD}{AB}\) =>AD\(^2\) =HD.DB (đpcm)
a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có
góc ADB chung
=>ΔHAD đồng dạng với ΔABD
b: ΔHAD đồng dạng vơi ΔABD
=>DH/DA=DA/DB
=>DA^2=DH*DB