Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC vuông tại A, AH vông góc với BC taị H. trên đường vuông góc với BC tại B. Lấy D sao cho AH=BD
a) chứng minh :tam giác AHB=DBH
b) AB song song DH
c) cho BAH = 35 độ. Tính góc ACB
d) chứng minh:hai đoạn thẳng BH và AD cắt nhau tại trung điểm của mỗi đoạn
Phân tích các đa thức sau thành nhân tử:
1) f(x) = x2 + 3x + 2
2) g(x) = x3 – 19x – 30
3) h(x) = x4 + 6x3 + 7x2 + 6x + 1
4) k(x) = x4 – 6x3 + 12x2 – 14x + 3
a) tu ve
b) xét tam giác AHB và tam giác DBH ta có:
AH=BD (gt ) BH=BH ( canh chung ) goc AHB= goc HBD (=90)
--> 2 tam giac = nhau theo th (c=g=c)
c) ta co goc ABH= goc BHD ( tam giac AHB= tam giac DBH)
ma goc ABH va goc BHD nam o vi tri so le trong
nen AB//HD
d)xet tam giac BAO va tam giac HDO ta co
AB=DH ( tam giac ABH= tam giac DBH)
goc OBA= goc OHD (2 goc so le trong va AB//HD)
goc OAB= goc ODH ( 2 goc so le trong va AB//HD)
--> 2 tam giac = nhau ( g=c=g)
--> BO= OH ( 2 canh tuong ung )
--> O la trung diem BH ( O thuoc BH)
d)ta co : goc BDH= goc BAH ( tam giac BDH= tam giac AHB )
ma goc BDH = 35 ( gt)
nen goc BAH=35
ta co:
goc BAH+ goc HAC=90 ( 2 goc ke phu)
goc HAC+goc ACB=90 ( tam giac AHC vuong tai H )
--> goc BAH= goc ACB
--> goc ACB=45
a) tu ve
b) xét tam giác AHB và tam giác DBH ta có:
AH=BD (gt ) BH=BH ( canh chung ) goc AHB= goc HBD (=90)
--> 2 tam giac = nhau theo th (c=g=c)
c) ta co goc ABH= goc BHD ( tam giac AHB= tam giac DBH)
ma goc ABH va goc BHD nam o vi tri so le trong
nen AB//HD
d)xet tam giac BAO va tam giac HDO ta co
AB=DH ( tam giac ABH= tam giac DBH)
goc OBA= goc OHD (2 goc so le trong va AB//HD)
goc OAB= goc ODH ( 2 goc so le trong va AB//HD)
--> 2 tam giac = nhau ( g=c=g)
--> BO= OH ( 2 canh tuong ung )
--> O la trung diem BH ( O thuoc BH)
d)ta co : goc BDH= goc BAH ( tam giac BDH= tam giac AHB )
ma goc BDH = 35 ( gt)
nen goc BAH=35
ta co:
goc BAH+ goc HAC=90 ( 2 goc ke phu)
goc HAC+goc ACB=90 ( tam giac AHC vuong tai H )
--> goc BAH= goc ACB
--> goc ACB=45
GT | △ABC cân tại A. AB = AC = 13cm. BC = 24cm. AH ⊥ BC (H BC). BK = CI. BM ⊥ AK. CN ⊥ AI |
KL | a, △AHC = △AHB b, AH = ? c, △ABK = △ACI d, △MBK = △NCI |
Bài giải:
a, Vì △ABC cân tại A (gt) => AB = AC và ABC = ACB
Xét △AHC vuông tại H và △AHB vuông tại H
Có: AH là cạnh hcung
AC = AB (cmt)
=> △AHC = △AHB (ch-cgv)
b, Ta có: BC = BH + HC
Mà BC = 24 cm
=> BH + HC = 24 cm
Mà HC = HB (△AHC = △AHB)
=> HC = HB = 24 : 2 = 12 (cm)
Xét △ABH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)
=> AH2 + 122 = 132 => AH2 = 25 => AH = 5
c, Ta có: ABK + ABC = 180o (2 góc kề bù)
ACI + ACB = 180o (2 góc kề bù)
Mà ABC = ACB (cmt)
=> ABK = ACI
Xét △ABK và △ACI
Có: AB = AC (cmt)
ABK = ACI (cmt)
BK = CI (gt)
=> △ABK = △ACI (c.g.c)
d, Xét △MBK vuông tại M và △NCI vuông tại N
Có: BK = CI (gt)
MKB = NIC (△ABK = △ACI)
=> △MBK = △NCI (ch-gn)
Bài 1
a. (Tự vẽ hình)
Áp dụng định lí Py-ta-go, ta có:
BC2= AB2 + AC2
<=> BC2= 62 + 82
<=> BC2= 100
=> BC = 10 (cm)
Bài 1
b. Áp dụng định lí Py-ta-go, ta có:
AC2 = AH2 + HC2
<=> 82 = 4,82 + HC2
<=> 64 = 23,04 + HC2
=> HC2 = 64 - 23,04
=> HC2 = 40,96
=> HC = 6,4 (cm)
=> HB = BC - HC = 10 - 6,4 = 3,6 (cm)
a) ta giác AHB và tam giác DAB có :
góc A= góc H (=90\(^0\))
Góc B:chung
=> tam giác AHB ~ tam giác DAB (g-g)
b) tam giác AHD và tam giác ABD có :
góc H= góc BAD (=90\(^0\))
góc D:chung
=> tam giác AHD ~ tam giác ABD (g-g)
=>\(\frac{DA}{DB}\)=\(\frac{HD}{AB}\) =>AD\(^2\) =HD.DB (đpcm)
Bạn xem lại hình như đây là toán lớp 8