Cho tam giác ABC vuông tại A có AB = 9cm, BC =15cm. BI là phân giác góc ABC.
a/ tính ac
b/Kẻ IH vuông góc BC. CM: tam giác AHB cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: XétΔCAI vuông tại A và ΔCHI vuông tại H có
CI chung
\(\widehat{ACI}=\widehat{HCI}\)
Do đó: ΔCAI=ΔCHI
Suy ra: CA=CH
b: Xét ΔABC vuông tại A và ΔHKC vuông tại H có
CA=CH
\(\widehat{ACB}\) chung
DO đó: ΔABC=ΔHKC
c: Ta có: ΔCKB cân tại C
mà CN là đường phân giác
nên CN là đường cao
a: XétΔCAI vuông tại A và ΔCHI vuông tại H có
CI chung
\(\widehat{ACI}=\widehat{HCI}\)
Do đó: ΔCAI=ΔCHI
Suy ra: CA=CH
b: Xét ΔABC vuông tại A và ΔHKC vuông tại H có
CA=CH
\(\widehat{ACB}\) chung
DO đó: ΔABC=ΔHKC
c: Ta có: ΔCKB cân tại C
mà CN là đường phân giác
nên CN là đường cao
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AHchung
Do đo: ΔAHB=ΔAHC
b: HB=HC=BC/2=3cm
=>AH=4cm
c: Xét ΔABM và ΔACN có
góc ABM=góc ACN
AB=AC
góc BAM chung
Do đó: ΔABM=ΔACN
Suy ra BM=CN
Xét ΔNBC và ΔMCB có
NB=MC
NC=MB
BC chung
Do đo: ΔNBC=ΔMCB
Suy ra: góc KBC=góc KCB
=>ΔKBC cân tại K
=>KB=KC
=>KN=KM
hay ΔKNM cân tại K
d: Xét ΔABC có AN/AB=AM/AC
nên NM//BC
a: BC=10cm
b: Xét ΔBAI vuông tại A và ΔBHI vuông tại H có
BI chung
\(\widehat{ABI}=\widehat{HBI}\)
Do đó: ΔBAI=ΔBHI
c: Ta có: ΔBAI=ΔBHI
nên BA=BH; IA=IH
=>ΔBAH cân tại B; ΔIAH cân tại I
a: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=5^2-3^2=16\)
=>\(AC=\sqrt{16}=4\left(cm\right)\)
b: Sửa đề: ME cắt BA tại K
Xét ΔABM vuông tại A và ΔEBM vuông tại E có
BM chung
\(\widehat{ABM}=\widehat{EBM}\)
Do đó: ΔBAM=ΔBEM
c: Ta có: ΔBAM=ΔBEM
=>BA=BE
Xét ΔBEK vuông tại E và ΔBAC vuông tại A có
BE=BA
\(\widehat{EBK}\) chung
Do đó: ΔBEK=ΔBAC
=>BK=BC
=>ΔBKC cân tại B
d: Ta có: MA+MC=AC
ME+MK=KE
mà AC=KE và MA=ME
nên MK=MC
=>ΔMKC cân tại M
=>\(\widehat{KMC}=180^0-2\cdot\widehat{MKC}\)
mà \(\widehat{KMC}=\widehat{AME}\)(hai góc đối đỉnh)
nên \(\widehat{AME}=180^0-2\cdot\widehat{MKC}\left(1\right)\)
Xét tứ giác BAME có
\(\widehat{BAM}+\widehat{BEM}+\widehat{ABE}+\widehat{AME}=360^0\)
=>\(\widehat{AME}+\widehat{ABC}=180^0\)
=>\(\widehat{AME}=180^0-\widehat{ABC}\left(2\right)\)
Từ (1),(2) suy ra \(\widehat{ABC}=2\cdot\widehat{MKC}\)
Hình đơn giản nên tự vẽ nhá.
a) Áp dụng định lý Py-ta-go vào tam giác vuông ABC:
AC^2 + AB^2 = BC^2
=> AC^2 = BC^2 - AB^2 = 15^2 - 9^2 = 225 - 81 = 144
=> AC = căn 144 = 12 (cm)
b) Xét tam giác BIA và tam giác BIH:
BAI^ = BHI^ = 90o
IBA^ = IBH^
BI chung
=> tam giác BIA = tam giác BIH (cạnh huyền_góc nhọn)
=> BA = BH (2 cạnh tương ứng)
=> Tam giác AHB cân
a.Ta có: AB=9cm ; BC=15cm
Theo định lý Py-ta-go: BC2 = AB2 +AC2
=>AC2 =BC2 - AB2 =152 - 92 = 225-81= 144
AC2 = 144 =>AC=\(\sqrt{144}\)=12cm
b.Ta có: IH vuông góc BC tại H => tam giác BIH vuông tại H
Góc A vuông ( tam giác ABC vuông tại A ) => tsm giác ABI vuông tại A
Xét tg BIH và tg ABI có:
=> BIH = ABI ( cạnh huyền - góc nhọn)
Do đó: AB = BH
mà đây là 2 cạnh bên của tam giác ABH => ABH cân tại H