K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2015

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

ABE = HBE (gt)

BE là cạnh chung

=> ΔABE = ΔHBE (cạnh huyền - góc nhọn)

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

15 tháng 10 2019

ΔABE = Δ HBE

⇒ BA = BH, EA = EH (các cặp cạnh tương ứng)

⇒ E, B cùng thuộc trung trực của AH

nên đường thẳng EB là trung trực của AH.

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔABE=ΔHBE

b: Ta có:ΔABE=ΔHBE

nên BA=BH và EA=EH

=>BE là đường trung trực của AH

c: Xét ΔAEK vuông tại A và ΔHEC vuông tại H có

EA=EH

\(\widehat{AEK}=\widehat{HEC}\)

Do đó: ΔAEK=ΔHEC

Suy ra: EK=EC

hay ΔEKC cân tại E

d: Xét ΔBKC có BA/AK=BH/HC

nên AH//KC

16 tháng 5 2017

Giải bài 8 trang 92 SGK Toán 7 Tập 2 | Giải toán lớp 7

 Xét ΔABE vuông tại A và ΔHBE vuông tại H có :

      BE chung

      Giải bài 8 trang 92 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ ΔABE = ΔHBE (cạnh huyền – góc nhọn)

28 tháng 10 2023

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

\widehat{BAE} =\widehat{BHE} =90^0 (gt)

\widehat{B_1} =\widehat{B_2}( BE là đường phân giác của góc HBA).

BE là cạnh chung.

=> ΔABE = ΔHBE

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

\widehat{KAE} =\widehat{CHE} =90^0 (gt)

EA = EH (cmt)

\widehat{E_1} =\widehat{E_2}( đối đỉnh).

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

góc ABE=góc HBE

=>ΔABE=ΔHBE

b: ΔBAE=ΔBHE

=>BA=BH và EA=EH

=>BE là trung trực của AH

c: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có

EA=EH

góc AEK=góc HEC

=>ΔEAK=ΔEHC

=>EK=EC

=>ΔEKC cân tại E

14 tháng 7 2021

undefined

a) Xét hai tam giác vuông ΔABE và ΔHBE có:

ABE = HBE (BE là tia phân giác giả thiết)

BE cạnh chung

⇒ ΔABE = ΔHBE (cạnh huyền - góc nhọn)

Vậy ΔABE = ΔHBE

b) AB = HB (2 cạnh tương ứng)

⇒ B thuộc đường trung trực của đoạn AH (1)

AE=HE (2 cạnh tương ứng)

⇒ E thuộc đường trung trực của đoạn AH (2)

Từ (1) và (2) ⇒ BE là đường trung trực của đoạn AH

Vậy BE là đường trung trực của đoạn AH

c) Xét hai tam giác vuông ΔAEK và ΔHEC có:

AEK = HEC (đối đỉnh)

AE = HE (cmt)

⇒ ΔAEK = ΔHEC (cạnh góc vuông - góc nhọn)

⇒ EK = EC (2 cạnh tương ứng) (3)

Vậy EK = EC

d) Ta có: ΔAEK vuông tại A

⇒ K<A

⇒ AE<KE (4)

Từ (3) và (4) ⇒ AE<EC

Vậy AE<EC

a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABE=ΔHBE(Cạnh huyền-góc nhọn)

b) Ta có: ΔABE=ΔHBE(cmt)

nên BA=BH(Hai cạnh tương ứng) và EA=EH(hai cạnh tương ứng)

Ta có: BA=BH(cmt)

nên B nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: EA=EH(cmt)

nên E nằm trên đường trung trực của AH(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BE là đường trung trực của AH

29 tháng 7 2016

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

\widehat{BAE} =\widehat{BHE} =90^0 (gt)

\widehat{B_1} =\widehat{B_2}( BE là đường phân giác BE).

BE là cạnh chung.

=> ΔABE = ΔHBE

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

\widehat{KAE} =\widehat{CHE} =90^0 (gt)

EA = EH (cmt)

\widehat{E_1} =\widehat{E_2}( đối đỉnh).

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

5 tháng 2 2017

Bạn giúp mình bài này được ko ?undefined

20 tháng 8 2015

a) xet tam giac ABE vuong tai A va tam giac HBE vuong tai H ta co

BE=BE ( canh chung) ; goc ABE= goc HBE ( BE la  tia p/g goc B)

--> tam giac ABE= tam giac HBE ( ch=gn)

b) ta co

BA=BH ( tam giac ABE= tam giac HBE)

EA=EH( tam giac ABE= tam giac HBE)

==> BE la duong trung truc cua AH

c) xet tam giac EKA va tam giac ECH   ta co

AE=EH ( tam giacABE= tam giacHBE) ; goc EAK= goc EHC (=90); goc AEK= goc HEC ( 2 goc doi dinh )

--> tam giac EKA = tam giac ECH ( g--c-g)

-->  EK=EC (2 canh tuong ung )

d) tu diem E den duong thang HC ta co :

EH la duong vuong goc ( EH vuong goc BC)

EC la duong xien

-> EH<EC ( quan he duong xien duong vuong goc)

ma EH= AE ( tam giac ABE= tam giac HBE)

nen AE < EC

 

3 tháng 5 2017

Cho tam giác ABC vuông tại a ; đường phân giác BE. kẻ EH cuông góc BC(H thuộc BC) Gọi K là giao điểm của AB và HE . Chứng minh rằng  

1) Tam giác ABE=tam giác HBE

2) BE là đường trung trực của đoạn thẳng AH; Chứng minh BE vuông góc KC

3) AE<EC

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

b: ΔBAE=ΔBHE

=>AE=HE

c: BA=BH

EA=EH

=>BE là trung trực của AH

d: BE là trung trực của AH

=>BE vuông góc AH