Tìm giá trị nhỏ nhất của \(f\left(x\right)=x+\dfrac{1}{x}\) với \(x\ge3\).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=\dfrac{x^2+10x+16}{x}=x+\dfrac{16}{x}+10\ge2\sqrt{\dfrac{16x}{x}}+10=14\)
\(f\left(x\right)_{min}=14\) khi \(x=4\)
Ta có \(f\left(x\right)-6=\dfrac{2x^3+4-6x}{x}=\dfrac{2\left(x-1\right)^2\left(x+2\right)}{x}\ge0\) nên \(f\left(x\right)\ge6\).
Đẳng thức xảy ra khi và chỉ khi x = 1.
Cách khác thì dùng AM - GM:
\(f\left(x\right)=2x^2+\dfrac{4}{x}=2x^2+\dfrac{2}{x}+\dfrac{2}{x}\ge3\sqrt[3]{2x^2.\dfrac{2}{x}.\dfrac{2}{x}}=6\).
Xảy ra đẳng thức khi x = 1.
\(f\left(x\right)\ge\dfrac{\left(\sqrt{2}+2\right)^2}{x+2-x}-1=2+2\sqrt{2}\)
\(f\left(x\right)_{min}=2+2\sqrt{2}\) khi
\(x=2\sqrt{2}-2\)
f'(x)>0 với mọi x khác -8, suy ra hàm số đã cho đồng biến trên [0;3].
Giá trị nhỏ nhất của f(x) trên [0;3] là (-m^2)/8. Ta có: (-m^2)/8=2.
Suy ra, không có giá trị nào của số thực m thỏa yêu cầu đề bài.
\(f\left(x\right)=x+\dfrac{2}{x-1}=x-1+\dfrac{2}{x-1}+1\ge2\sqrt{\dfrac{2\left(x-1\right)}{x-1}}+1=2\sqrt{2}+1\)
\(f\left(x\right)_{min}=2\sqrt{2}+1\)
Ta có: \(f\left(x\right)=x+\dfrac{2}{x-1}=x-1+\dfrac{2}{x-1}+1\)
Vì x > 1 nên x - 1 > 0 và \(\dfrac{2}{x-1}>0\)
Áp dụng bất đẳng thức cô-si cho hai số dương \(x-1;\dfrac{2}{x-1}\) ta được:
\(x-1+\dfrac{2}{x-1}\ge2.\sqrt{x-1.\dfrac{2}{x-1}}=2\sqrt{2}\)
\(=>f\left(x\right)=x-1+\dfrac{2}{x-1}+1\ge2\sqrt{2}+1\)
⇒ Giá trị bé nhất của f(x) là 2√2 + 1 .
Dấu “=” xảy ra khi và chỉ khi x - 1 = \(\dfrac{2}{x-1}\) và x > 1 ⇔ x = 1 + √2
\(f\left(x\right)=x\dfrac{2}{x-1}=x-1+\dfrac{2}{x-1}+1\)
Ta có x \(\ge\) 3 => \(\dfrac{1}{x}\) \(\ge\dfrac{1}{3}\)=> x + \(\dfrac{1}{x}\ge\dfrac{4}{3}\)=>\(\min\limits_{ }\)=\(\dfrac{4}{3}\) tại x=0
Giá trị nhỏ nhất là 10/3