tính tổng
B=3-3^2+3^3-3^4+........-3^100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
a. Xét tam giác $ABM$ và $DCM$ có:
$BM=CM$ (do $M$ là trung điểm $AB$)
$AM=MD$ (gt)
$\widehat{AMB}=\widehat{DMC}$ (đối đỉnh)
$\Rightarrow \triangle ABM=\triangle DCM$ (c.g.c)
b.
Từ tam giác bằng nhau phần a suy ra $\widehat{ABM}=\widehat{DCM}$
Mà 2 góc này ở vị trí so le trong nên $AB\parallel CD$
c.
Xét tam giác $ABM$ và $ACM$ có:
$AB=AC$
$BM=CM$
$AM$ chung
$\Rightarrow \triangle ABM=\triangle ACM$ (c.c.c)
$\Rightarrow \widehat{AMB}=\widehat{AMC}$
Mà 2 góc này kề bù nên $\widehat{AMB}=\widehat{AMC}=90^0$
$\Rightarrow AM\perp BC$ hay $AM\perp BC$
Mà $M$ là trung điểm của $BC$ nên $AM$ là trung trực của $BC$
Bài 3:
a: a*S=a^2+a^3+...+a^2023
=>(a-1)*S=a^2023-a
=>\(S=\dfrac{a^{2023}-a}{a-1}\)
b: a*B=a^2-a^3+...-a^2023
=>(a+1)B=a-a^2023
=>\(B=\dfrac{a-a^{2023}}{a+1}\)
a) Ta có: \(A=1^3+2^3+3^3+...+100^3\)
\(=\left(1-1\right)\cdot1\cdot\left(1+1\right)+1+\left(2-1\right)\cdot2\cdot\left(2+1\right)+2+...+\left(100-1\right)\cdot100\cdot\left(100+1\right)+100\)
\(=1+2+1\cdot2\cdot3+...+99\cdot100\cdot101\)
\(=5050+25497450\)
\(=25502500\)
Bài 1:
A = 1 + 3 + 32 + ... + 3100
=> 3A = 3 + 32 + ... + 3101
=> 2A = 3101 - 1
=> A = \(\frac{3^{101}-1}{2}\)
B = 1 + 42 + 44 + ... + 4100
=> 8B = 42 + 44 + ... + 4102
=> 7B = 4102 - 1
=> B = \(\frac{4^{102}-1}{7}\)
Bài 2:
a) S1 = 22 + 42 + ... + 202
=> S1 = 22(1+22+...+102)
=> S1 = 22.385
=> S1 = 1540
b) S2 = 1002 + 2002 + ... + 10002
=> S2 = 1002(1+22+...+102)
=> S2 = 1002.385
=> S2 = 3850000
QL: Mỗi số hạng cách đều nhau 3 đvị
a) Số hạng thứ 100 của tổng là: (100-1)x3+5=302
b) Từ 5 đến 302 có số số hạng là: (302-5):3+1=100 số hạng
Tổng của 100 số hạng đầu tiên là: (5+302)x100:2=15350
3B=32-33+34-...-3101
B+3B=3-3101
4B=3-3101
B=\(\frac{3-3^{101}}{4}\)