Cho tam giác ABC vuông tại A , M là trung điểm của AC. Vẽ MD vuông góc BC (D thuộc BC) . Chứng minh : BD Bình phương - CD bình phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông tại A, M là trung điểm của AC. Vẽ MD vuông góc với BC ( D thuộc BC ) . Chứng minh : AB2 = BD2 - CD2 .
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
=>ADME là hình chữ nhật
=>AM=DE
b:
MD\(\perp\)AB
AC\(\perp\)AB
Do đó: MD//AC
ME\(\perp\)AC
AB\(\perp\)AC
Do đó: ME//AB
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét ΔBAC có
M,D lần lượt là trung điểm của BC,BA
=>MD là đường trung bình của ΔBAC
=>MD//AC và \(MD=\dfrac{AC}{2}\)
\(MD=\dfrac{AC}{2}\)
\(CE=\dfrac{AC}{2}\)
Do đó: MD=CE
MD//AC
\(E\in\)AC
Do đó: MD//CE
Xét tứ giác DMCE có
DM//CE
DM=CE
Do đó: DMCE là hình bình hành
c: Xét ΔABC có
D,E lần lượt là trung điểm của AB,AC
=>DE là đường trung bình của ΔABC
=>DE//BC
=>DE//HM
ΔHAC vuông tại H
mà HE là đường trung tuyến
nên \(HE=\dfrac{AC}{2}\)
mà \(MD=\dfrac{AC}{2}\)
nên HE=MD
Xét tứ giác DHME có
ED//MH
=>DHME là hình thang
Hình thang DHME có MD=HE
nên DHME là hình thang cân
Ta có : \(BD^2-CD^2=\left(MB^2-MD^2\right)-\left(MC^2-MD^2\right)=MB^2-MC^2=MB^2-MA^2=AB^2\) ( Vì MA = MB)
Vậy \(AB^2=BD^2-CD^2\)
Ta có : 2MC = AC(Vì M là trung điểm của AC)
=> 2MC.AC =AC2
Ta có ; Tam giác MDC đồng dạng tam giác BAC nên
(MC/BC) = (DC/AC)
=> MC.AC = BC.DC
=> 2.MC.AC = 2BC.Dc
=> ac2 = 2BC.DC
=> BC 2 - AC 2 = BC 2 - 2Bc - dc
=> AB2 = BC.(BC - CD - CD ) = Bc . (BD-Dc) = (BD +DC) .(BD - CD)
=> AB2 = BD2 - CD2 (ĐPCM)
Mk ko biết vẽ hình đâu nên mong bạn thứ lỗi
a) Xét tứ giác ADME có:
∠(DAE) = ∠(ADM) = ∠(AEM) = 90o
⇒ Tứ giác ADME là hình chữ nhật.
b) Ta có ME // AB ( cùng vuông góc AC)
M là trung điểm của BC (gt)
⇒ E là trung điểm của AC.
Ta có E là trung điểm của AC (cmt)
Chứng minh tương tự ta có D là trung điểm của AB
Do đó DE là đường trung bình của ΔABC
⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC
⇒ Tứ giác CMDE là hình bình hành.
a: Xét tứ giác ADME có \(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
nên ADME là hình chữ nhật
b: Xét ΔCAB có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét tứ giác CEDM có
DM//CE
DM=CE
Do đó: CEDM là hình bình hành
c: Ta có: ΔAHC vuông tại H
mà HE là đường trung tuyến
nên HE=AC/2=MD
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔBAC có
E la trung điểm của AC
D là trung điểm của AB
Do đó: ED là đường trung bình
=>ED//BC
hay ED//MH
=>EMHD là hình thang
mà EH=MD
nên EMHD là hình thang cân
Bạn ơi đề thiếu hay sao ấy
Phải là :
BD2 - CD2 = ?
Sửa đi mik giải cho