tìm n thuộc z dể các phân số sau có kết quả là số nguyen
A=n+9/n+2
B3n+9/n+2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A thuộc Z
=>n+9 chia hết n+2
=>n+2+7 chia hết n+2
=>7 chia hết n+2
=>n+2 thuộc Ư(7)={1;-1;7;-7}
=>n+2 thuộc {1;-1;7;-7}
=>n thuộc {-1;-3;5;-9}
\(B=\frac{3n+9}{n+2}=\frac{3\left(n+2\right)+3}{n+2}=\frac{3\left(n+2\right)}{n+2}+\frac{3}{n+2}=3+\frac{3}{n+2}\in Z\)
=>3 chia hết n+2
=>n+2 thuộc Ư(3)={1;-1;3;-3}
=>n+2 thuộc {1;-1;3;-3}
=>n thuộc {-1;-3;1;-5}
a) Điều kiện \(n+2\ne0\Leftrightarrow n\ne-2\)
b) \(E=\frac{3n+7}{n+2}=\frac{3n+6+1}{n=2}=\frac{3\left(n+2\right)}{n+2}+\frac{1}{n+2}=3+\frac{1}{n+2}\)
Để E thuộc Z thì 1 phải chia hết cho n+2 hay n+2 là ước của 1
Ư(1) = {-1; 1}
+) n+2 = -1 => n = -3
+) n+2 = 1 => n = -1
Vậy n E {-3; -1} thì E thuộc Z
n - 1 là ước của 19 và đồng thời n là bội của 9
do n - 1 là ước của 19 nên suy ra n - 1 = 1 => n = 2
n - 1 = - 1 = > n = 0
n - 1 = 19 => n = 20
n - 1 = -19 => n = -18
trong 4 giá trị của n chỉ có n = 0 và n = -18 là bội của 9
=> n = 0 or n = -19
tích nha
Để A thuộc Z
=>n+9 chia hết n+2
=>n+2+7 chia hết n+2
=>7 chia hết n+2
=>n+2 thuộc Ư(7)={1;-1;7;-7}
=>n+2 thuộc {1;-1;7;-7}
=>n thuộc {-1;-3;5;-9}
\(B=\frac{3n+9}{n+2}=\frac{3\left(n+2\right)+3}{n+2}=\frac{3\left(n+2\right)}{n+2}+\frac{3}{n+2}=3+\frac{3}{n+2}\in Z\)
=>3 chia hết n+2
=>n+2 thuộc Ư(3)={1;-1;3;-3}
=>n+2 thuộc {1;-1;3;-3}
=>n thuộc {-1;-3;1;-5}
Ta có: \(A=\frac{n+9}{n+2}\)
để A có giá trị nguyên
\(\Leftrightarrow\) n + 9 chia hết cho n + 2
\(\Leftrightarrow\) n + 2 + 7 chia hết cho n + 2
\(\Leftrightarrow\) 7 chia hết cho n + 2
\(\Leftrightarrow\) n + 2 \(\in\) Ư(7) = {-1; 1; -7; 7}
\(\Leftrightarrow\) n \(\in\) {-3; -2; -9; 5}
Vậy n \(\in\) {-3; -2; -9; 5}
Ta có: \(B=\frac{3n+9}{n+2}\)
Để B có giá trị nguyên
\(\Leftrightarrow\) 3n + 9 chia hết cho n+ 2
\(\Leftrightarrow\) 3n + 6 + 3 chia hết cho n+2
\(\Leftrightarrow\) 3 chia hết cho n + 2
\(\Leftrightarrow\) n + 2 \(\in\) Ư(3)
\(\Leftrightarrow\) n + 2 \(\in\) {-1; 1; -3; 3}
\(\Leftrightarrow\) n \(\in\) {-3; -1; -5; 1}
Vậy n \(\in\) {-3; -1; -5; 1}