K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2022

Bài 1 : biến x^4y^3tz^4

Bài 2 : 

Theo bài ra ta có a > 0 

cạnh còn lại là 2a 

Theo định lí Pytago \(a^2+2a^2=3a^2\)

Vậy bình phương cạnh huyền là 3a^2 

5 tháng 3 2022

1) Phần biến của đơn thức đã cho là \(xy^3xtz^4x^2\)

2) Độ dài cạnh góc vuông còn lại là \(2a\)

Theo định lý Py-ta-go, ta có bình phương cạnh huyền bằng \(a^2+\left(2a\right)^2=a^2+4a^2=5a^2\)

3) \(4mx^{2n+5}y^{m-1}=\left(\frac{4}{3}x^ny^3\right).\left(3mx^{n+5}y^{m-4}\right)\)

14 tháng 7 2023

Bài 8: Vì em nhắn tin nhờ cô giảng bài 8 nên cô chỉ giảng bài 8 thôi nhé

Gọi các cạnh góc vuông, cạnh huyền của tam giác cần tìm lần lượt là: a; b; c

Theo bài ra ta có: a+b+c =36; \(\dfrac{a}{b}\) = \(\dfrac{3}{4}\)

\(\dfrac{a}{b}\) = \(\dfrac{3}{4}\) ⇒ \(\dfrac{a}{3}\) = \(\dfrac{b}{4}\) ⇒ \(\dfrac{a^2}{9}\) = \(\dfrac{b^2}{16}\) = \(\dfrac{a^2+b^2}{9+16}\) (1)

Vì tam giác vuông nên ta theo pytago ta có: a2 + b2  = c2 (2)

Thay (2) vào (1) ta có: \(\dfrac{a^2}{9}\) = \(\dfrac{b^2}{16}\) = \(\dfrac{c^2}{25}\)

⇒ \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\) 

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\) = \(\dfrac{a+b+c}{3+4+5}\) = \(\dfrac{36}{12}\) = 3

a = 3.3 = 9 (cm)

b = 3.4 = 12 (cm)

c = 3.5 = 15 (cm)

Kết luận: độ dài cạnh bé của góc vuông là: 9 cm

               dộ dài cạnh lớn của góc vuông là 12 cm

              độ dài cạnh huyền là 15 cm

 

14 tháng 7 2023

Bài 9:

a,Gọi độ dài cạnh góc vuông là: a

Theo pytago ta có: a2 + a2 = 22 = 4 ⇒ 2a2 = 4 ⇒ a2 = 2 ⇒ a = \(\sqrt{2}\)

b, Gọi độ dài cạnh góc vuông là :b 

Theo pytago ta có:

b2 + b2 = 102 =100 ⇒ 2b2 = 100 ⇒ b2 = 50⇒ b = 5\(\sqrt{2}\)

14 tháng 7 2023

Bài 8 cô làm rồi nhé. 

Bài 10 ; Gọi độ dài các cạnh góc của tam giác vuông lần lượt là:

a; b theo bài ra ta có: 

\(\dfrac{a}{5}\) = \(\dfrac{b}{12}\) \(\Rightarrow\) \(\dfrac{a^2}{25}\) = \(\dfrac{b^2}{144}\) = \(\dfrac{a^2+b^2}{25+144}\) (1)

Theo pytago ta có: a2 + b2 = 522 = 2704 (2)

Thay (2) vào (1) ta có: \(\dfrac{a^2}{25}\) = \(\dfrac{b^2}{144}\) = \(\dfrac{2704}{169}\) = 16

⇒ a2 = 25.16 = (4.5)2 ⇒ a = 20

b2 = 144.16 = (12.4)2 ⇒ b = 48

28 tháng 12 2017

Bài 2:

Độ dài canh góc vuông cần tìm là:

24:75%=32(cm)

Chu vi tam giác là:

24+40+32=96(cm)

Diện tích tam giác là:

S=(24*32):2=384(cm2)

Bài 1:

\(S=\dfrac{2.4\cdot1.7}{2}=1.2\cdot1.7=2.04\left(dm^2\right)\)

Bài 2: 

\(S=\dfrac{24\cdot16}{2}=24\cdot8=192\left(cm^2\right)\)

8 tháng 1 2022

cảm ơn

Bài 2: 

Gọi tam giác vuông đo là ΔABC vuông tại A có AH là đường cao 

Theo đề, ta có: \(\dfrac{AB}{AC}=\dfrac{3}{7}\)

\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{9}{49}\)

\(\Leftrightarrow HB=\dfrac{9}{49}HC\)

Ta có: \(HB\cdot HC=AH^2\)

\(\Leftrightarrow HC^2=42^2:\dfrac{9}{49}=9604\)

\(\Leftrightarrow HC=98\left(cm\right)\)

\(\Leftrightarrow HB=42cm\)

9 tháng 9 2016

Bài 1:

3 4 x y z

Áp dụng đl pytago ta có:

\(\left(y+z\right)^2=3^2+4^2=9+16=25\)

=> y + z = 5

Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó trên cạnh huyền ta có:

\(3^2=y\left(y+z\right)=5y\)

=>\(y=\frac{3^2}{5}=1,8\)

Có: y + z =5

=>z=5-y=5-1,8=3,2

Áp dụng hên thức liên quan tới đường cao:

\(x^2=y\cdot z=1,8\cdot3,2=\frac{144}{25}\)

=>\(x=\frac{12}{5}\)

2 tháng 9 2019

Bài 2:

B A C H 1cm 2cm x y

Ta có: △ABC vuông tại A và có đg cao AH

AB2 = BH.BC ( hệ thức lượng )

⇒ x2 = 1 . 3

⇒ x = \(\sqrt{1.3}=\sqrt{3}cm\)

AC2 = CH.BC

⇒ y2 = 2 . 3

⇒ y = \(\sqrt{6}\) cm

20 tháng 9 2017

câu 2

Gọi tgv trên là tg ABC vuông tại A, AB/AC = 3/4 và AC = 125 

Ta có: AB/AC = 3/4 => AB^2/AC^2 = 9/16 => 16AB^2 - 9AC^2 = 0 (*) 
Ngoài ra: AC^2 = BC^2 - AB^2 = (125)^2 - AB^2 = 15625 - AB^2(**) 
Thay (**) vào (*) ta có: 16AB^2 - 9(15625 - AB^2) = 0 => 25AB^2 - 140625 = 0 
=> AB^2 = 5605. Vì AB > 0 => AB = 75 
AC = 4/3 x AC => AC = 100 

Gọi AH là là đường cao của tgv ABC, ta có BH, CH là hình chiếu của AB và AC. 
Ta dễ dàng thấy tgv ABC, tgv BHA và tgv AHC là 3 tg đồng dạng, Ta có: 
* BH/AB = AB/BC => BH = AB^2/BC = 75^2/125 = 45 
* CH/AC = AC/BC => CH = AC^2/BC = 100^2/125 = 80

20 tháng 9 2017

(hình bạn tự vẽ nhé)
Gọi hai hình chiếu của hai cạnh góc vuông trên cạnh huyền là x và y
Ta có : x.y = 2^2 = 4 (tích hai hình chiều bằng bình phương đường cao) (1)
và x + y = 5 => x = 5 - y
Thay vào (1) : (5 - y)y = 4 <=> y^2 - 5y + 4 = 0
<=> (x - 4)(x - 1) = 0 <=> x = 4 hoặc x = 1
=> y = 1 hoặc y = 4
Từ đó suy ra cạnh nhỏ nhất của tam giác là cạnh có hình chiếu bằng 1.
=> (cạnh gv nhỏ nhất)^2 = (hình chiếu nhỏ nhất).(cạnh huyền) = 1.5
=> cạnh góc vuông nhỏ nhất = căn 5