5.x.15625 = 625
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 3/1×5 + 3/5×9 + 1/9×13 + ... + 9/97×101 + 3/101×105
A = 3/4 × (4/1×5 + 4/5×9 + 4/9×13 + ... + 4/97×101 + 4/101×105)
A = 3/4 × (1 - 1/5 + 1/5 - 1/9 + 1/9 - 1/13 + ... + 1/97 - 1/101 + 1/101 - 1/105)
A = 3/4 × (1 - 1/105)
A = 3/4 × 104/105
A = 26/35
B = 1/5 + 1/25 + 1/125 + 1/625 + 1/3125 + 1/15625
5B = 1 + 1/5 + 1/25 + 1/125 + 1/625 + 1/3125
5B - B = (1 + 1/5 + 1/25 + 1/125 + 1/625 + 1/3125) - (1/5 + 1/25 + 1/125 + 1/625 + 1/3125 + 1/15625)
4B = 1 - 1/15625
4B = 15624/15625
B = 15624/15625 : 4
B = 3906/15625
C = 1 + 2 + 4 + 8 + 16 + ... + 2048 + 4096
2C = 2 + 4 + 8 + 16 + 32 + ... + 4096 + 8192
2C - C = (2 + 4 + 8 + 16 + 32 + ... + 4096 + 8192) - (1 + 2 + 4 + 8 + ... + 2048 + 4096)
B = 8192 - 1
B = 8191
A= (5-15625).2015.(52-15625).2015.(53-15625).2015...(52016-15625).2015
A= (5-15625).2015.(52-15625).2015.(53-15625).2015...(56-15625).2015...(52016.15625).2015
A= (5-15625).2015.(52-15625).2015.(53-15625).2015...(15625-15625).2015...(52016.15625).2015
A= (5-15625).2015.(52-15625).2015.(53-15625).2015...0.2015...(52016.15625).2015
A= 0
\(=1+5+5^2+...+5^6+5^7\\ \text{Đặt }A=1+5+5^2+...+5^7\\ \Leftrightarrow5A=5+5^2+...+5^8\\ \Leftrightarrow4A=5^8-1\\ \Leftrightarrow A=\dfrac{5^8-1}{4}=97656\)
5xS=1+1/5+1/25+....+1/3125
5xS-S=(1+1/5+1/25+...+1/3125)-(1/5+1/25+1/125+....+1/15625)
4xS=1-1/15625=15624/15625
1xS=15624/15625:4=15624/15625x1/4=15624/62500=3906/15625
a) \(4^n=4096\Rightarrow4^n=4^6\Rightarrow n=6\)
b) \(5^n=15625\Rightarrow5^n=5^6\Rightarrow n=6\)
c) \(6^{n+3}=216\Rightarrow6^{n+3}=6^3\Rightarrow n+3=3\Rightarrow n=0\)
d) \(x^2=x^3\Rightarrow x^3-x^2=0\Rightarrow x^2\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
e) \(3^{x-1}=27\Rightarrow3^{x-1}=3^3\Rightarrow x-1=3\Rightarrow x=4\)
f) \(3^{x+1}=9\Rightarrow3^{x+1}=3^2\Rightarrow x+1=2\Rightarrow x=1\)
g) \(6^{x+1}=36\Rightarrow6^{x+1}=6^2\Rightarrow x+1=2\Rightarrow x=1\)
h) \(3^{2x+1}=27\Rightarrow3^{2x+1}=3^3\Rightarrow2x+1=3\Rightarrow2x=2\Rightarrow x=1\)
i) \(x^{50}=x\Rightarrow x^{50}-x=0\Rightarrow x\left(x^{49}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x^{49}=1=1^{49}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
4n = 4096
4n = 212
n = 12
5n = 15625
5n = 56
n = 6
6n+3 = 216
6n+3 = 23.33
6n+3 = 63
n + 3 = 3
52x×5×5x=625
=>52x×5×5x=54
=>52x+1+x=54
=>2x+1+x=4
=>3x+1=4
=>3x=4-1=3
=>x=1
\(5\cdot x\cdot15625=625\)
\(5\cdot x=625:15625\)
\(\Rightarrow x=\frac{1}{25}:5=\frac{1}{125}\)