Tính:
\(S=1+2.5+3.5^2+4.5^3+...+99.5^{98}+100.5^{99}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải ko cần sử dụng nhị thức Newton:
\(S=5+2.5^2+3.5^3+...+49.5^{49}+50.5^{50}\)
\(\Rightarrow5S=5^2+2.5^3+3.5^4+...+49.5^{50}+50.5^{51}\)
Trừ dưới cho trên:
\(4S=-5-5^2-5^3-5^4-...-5^{50}+50.5^{51}\)
\(\Rightarrow4S=5.5^{51}-\left(5+5^2+...+5^{50}\right)\)
Chú ý rằng trong ngoặc là tổng cấp số nhân với \(\left\{{}\begin{matrix}u_1=5\\q=5\end{matrix}\right.\)
\(\Rightarrow4S=5.5^{51}-\frac{5^{51}-5}{4}=\frac{19}{4}.5^{51}+\frac{5}{4}\)
\(\Rightarrow S=\frac{19.5^{51}+5}{16}\)
c) Đặt \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
\(\Leftrightarrow3A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\right)\)
\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\)
\(\Leftrightarrow3\cdot A=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-2\cdot3\cdot4+...+98\cdot99\cdot100-98\cdot99\cdot100+99\cdot100\cdot101\)
\(\Leftrightarrow3\cdot A=99\cdot100\cdot101\)
\(\Leftrightarrow A=33\cdot100\cdot101=333300\)
b) Ta có: \(1+2-3-4+...+97+98-99-100\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(97+98-99-100\right)\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(=-4\cdot25=-100\)
3.5x + 4.5x+1 + 2.5x+2 = 1825
5x.(3+4.5+2.52) = 1825
=> 5x.73 = 1825
=> 5x = 25 = 52
=> x = 2
\(A=\frac{4}{6}+\frac{10}{12}+\frac{18}{20}+...+\frac{9898}{9900}\)
\(A=1-\frac{2}{6}+1-\frac{2}{12}+1-\frac{2}{20}+...+1-\frac{2}{9900}\)
\(A=98-\left(\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{99.100}\right)\)Đặt Biểu thức trong ngoặc đơn là B
\(\Rightarrow A=98-B\)
\(\Rightarrow\frac{B}{2}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(\frac{B}{2}=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{100-99}{99.100}\)
\(\frac{B}{2}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}\)
\(\Rightarrow B=\frac{2.49}{100}=\frac{98}{100}\)
Ta nhận thấy \(B=\frac{98}{100}< 1\Rightarrow A=98-\frac{98}{100}=97+\frac{2}{100}\)
\(\Rightarrow97< A< 98\left(dpcm\right)\)
Ta có:
\(\frac{2^3.3^4}{2^2.3^2.5}=\frac{2.3^2}{5}=\frac{18}{5}\)
\(\frac{2^4.5^2.11^2.7}{2^3.5^3.7^2.11}=\frac{2.11}{5.7}=\frac{22}{35}\)