Tính nhanh:
\(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{9702}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta nhận thấy
1/2=1-1/2
1/6=1/2-1/3
1/12=1/3-1/4
1/20=1/4-1/5
1/30=1/5-1/6
1/42=1/6-1/7
ta có:
1/2+1/6+1/12+1/20+1/30+1/42
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7
=1-1/7
=6/7
bn tự hiểu nha
\(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}\\ =\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}\\ =\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}\\ =\dfrac{1}{3}-\dfrac{1}{9}\\ =\dfrac{2}{9}\)
\(\dfrac{1}{6}+\dfrac{7}{12}-\dfrac{9}{20}+\dfrac{11}{30}-\dfrac{13}{42}\)
\(=\dfrac{1}{2.3}+\dfrac{7}{3.4}-\dfrac{9}{4.5}+\dfrac{11}{5.6}-\dfrac{13}{6.7}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}+\dfrac{1}{4}-\left(\dfrac{1}{4}+\dfrac{1}{5}\right)+\dfrac{1}{5}+\dfrac{1}{6}-\left(\dfrac{1}{6}+\dfrac{1}{7}\right)\)
\(=\dfrac{1}{2}-\dfrac{1}{7}=\dfrac{5}{14}\)
A = 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56
A = (1/6 + 1/12) + 1/20 + 1/30 + 1/42 + 1/56
A = 1/4 + 1/20 + 1/30 + 1/42 + 1/56
A = (1/4 + 1/20) + 1/30 + 1/42 + 1/56
A = 3/10 + 1/30 + 1/42 + 1/56
A = (3/10 + 1/30) + 1/42 + 1/56
A = 1/3 + 1/42 + 1/56
A = (1/3 + 1/42) + 1/56
A = 5/14 + 1/56
A = 3/8
E =16+112+120+130+142+156
E=\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
E=\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{1}-...+\dfrac{1}{7}-\dfrac{1}{8}\)
E=\(\dfrac{1}{2}-\dfrac{1}{8}=\dfrac{3}{8}\)
A=\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9702}+\dfrac{1}{9900}\)
= \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{98.99}+\dfrac{1}{99.100}\)
=\(\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
= \(1-\dfrac{1}{100}\) = \(\dfrac{99}{100}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(A=1-\dfrac{1}{8}=\dfrac{7}{8}\)
A = \(\dfrac{1}{20}\) + \(\dfrac{1}{30}\) + \(\dfrac{1}{42}\) + \(\dfrac{1}{56}\) + \(\dfrac{1}{72}\) + \(\dfrac{1}{90}\) + \(\dfrac{1}{110}\) + \(\dfrac{1}{132}\)
A = \(\dfrac{1}{4\times5}\) + \(\dfrac{1}{5\times6}\) + \(\dfrac{1}{6\times7}\)+ \(\dfrac{1}{7\times8}\)+\(\dfrac{1}{8\times9}\)+ \(\dfrac{1}{9\times10}\) + \(\dfrac{1}{10\times11}\)+\(\dfrac{1}{11\times12}\)
A = \(\dfrac{1}{4}\)-\(\dfrac{1}{5}\) +\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\) +.....+\(\dfrac{1}{11}\) - \(\dfrac{1}{12}\)
A = \(\dfrac{1}{4}\) - \(\dfrac{1}{12}\)
A = \(\dfrac{1}{6}\)
=1 phần 3*4+1 phần 4*5+1 phần 5*6+...+1 phần 98*99
=1 phần 3-1 phần 4+ 1 phần 4- 1 phần 5+...+1 phần 98-1 phần 99
=1 phần 3- 1 phần 99 =32 phần 99
\(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{9702}=\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{98\cdot99}=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{98}-\dfrac{1}{99}=\dfrac{1}{3}-\dfrac{1}{99}=\dfrac{33-1}{99}=\dfrac{32}{99}\)