So sánh các lũy thừa sau
A) 2^100 và 1024^9
B) 9^12 và 27^7
C) 13^40 và 2^161
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2^{300}\) và\(3^{200}\)
Ta có: \(2^{300}=2^{3.100}=\left(2^3\right)^{100}=8^{100}\)
\(3^{200}=3^{2.100}=\left(3^2\right)^{100}=9^{100}\)
Vì 8 < 9 nên \(8^{100}< 9^{100}\)
Vậy \(2^{300}< 3^{200}\)
Đơi mik 1 chút lát nữa mik giải tiếp
Sao cậu hỏi nhiều câu hỏi cùng 1 lúc vậy nên tách thành từng câu nhỏ thôi
+) Ta có :
291 = (213)7 = 81927
535 = (55)7 = 31257
Vì 3125 < 8192 nên 31257 < 81927 hay 535 < 291
+) Ta có :
10249 = (210)9 = 290
Vì 290 < 2100 nên 10249 < 2100
+) Ta có :
912 = (32)12 = 324
277 = (33)7 = 321
Vì 321 < 324 nên 277 < 912
Ủng hộ mk nha !!! ^_^
912 và 277
Ta có: 912 = ( 32 )12 = 324
277 = ( 33 )7 = 321
Vì 324 > 321 nên 912 > 277
9^27=3^81 > 81^13 =3^52
5^14 =25^7 < 27^7
10^30>9^30=3^90 > 2^100 (chú ý 3^3>2^4)
2^300=8^100 < 3^200=9^100
8^5=2^15=2^6.2^9 < 2^6.3^6 (chú ý 2^3<3^2)
3^450=(3^3)^150=27^150 > 5^300=(5^2)^150=25^150
a/
\(27^{81}=\left(3^3\right)^{81}=3^{241}\)
\(81^{27}=\left(3^4\right)^{27}=3^{108}\)
\(\Rightarrow27^{81}=3^{241}>3^{108}=81^{27}\)
b/
\(5^{60}=\left(5^3\right)^{20}=125^{20}\)
\(7^{40}=\left(7^2\right)^{20}=49^{20}\)
\(\Rightarrow5^{60}=125^{20}>49^{20}=7^{40}\)
c/
\(11^{102}=\left(11^2\right)^{51}=121^{51}>121^{50}>99^{50}\)
d. So sánh a=12^34567 với b=(12^5)^12=12^60 => a>b
so sánh b=(12^5)^12 với c=34567^12 => b>c
Vậy a>c.
a)\(2^{100}=\left(2^{10}\right)^{10}=1024^{10}>1024^9\)
b) \(9^{12}=\left(3^2\right)^{12}=3^{24}\) và \(27^7=\left(3^3\right)^7=3^{21}\)
=> \(9^{12}>27^7\)
a, 1024 mũ 9 = 2 mũ 10 .9 = 2 mũ 90 < 2 mũ 100
b, 27 mũ 7 = 3 mũ 3.7 =3 mũ 21 < 3 mũ 24 = 3 mũ 2.12 = 9 mũ 12
c,2 mũ 161 > 2 mũ 160 = 2 mũ 4.40 = 16 mũ 40 > 13 mũ 40