CMR bieu thuc sau khong phu thoc vao x,y,z
P= x^3(z-y^2)+y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( x + y - z - t )2 - ( z + t - x - y )2
= [( x + y - z - t ) + ( z + t - x - y )] . [( x + y - z - t ) - ( z + t - x - y )]
= 0 . [( x + y - z - t ) - ( z + t - x - y )]
= 0
=> Biểu thức trên không phụ thuộc vào biến
a.
\(x\left(y+z-yz\right)-y\left(z+x-xz\right)+z\left(y-x\right)=xy+xz-xyz-yz-xy+xyz+yz-xz=0\)
Vậy giá trị của biểu thức rên không phụ thuộc vào x.
b.
\(\left(x+1\right)\left(1+x-x^2+x^3-x^4\right)-\left(x-1\right)\left(1+x+x^2+x^3+x^4\right)+2x^5-2x\)
\(=x+x^2-x^3+x^4-x^5+1+x-x^2+x^3-x^4-x-x^2-x^3-x^4-x^5+1+x+x^2+x^3+x^4+2x^5-2x\)
= 2
Vậy giá trị của biểu thức trên không phụ thuộc vào x.
P = x^3 (z-y^2) +y^3(x-z^2)+z^3(y-x^2)+xyz(xyz-1)
= -x^3 (y^2-z) +y^3x-y^3z^2 +z^3y-z^3x^2+x^2y^2z^2-xyz
= -x^3 (y^2-z)+(y^3x-xyz)-(y^3z^2-z^3y)+(x^2y^2...
= -x^3 (y^2-z)+xy(y^2-z)-yz^2(y^2-z)+x^2z^2(y^2...
= (y^2-z)(-x^3+xy-yz^2+x^2z^2)
= (y^2-z)[-x(x^2-y)+z^2(x^2-y)]
= (y^2-z)(x^2-y)(z^2-x) = b. a. c ko phụ thuộc vào biến
Thay \(x=1;y=-1;z=3\) vào biểu thức ta có
\(1\cdot\left(-1\right)\cdot3+\dfrac{2\cdot1^2\cdot\left(-1\right)}{\left(-1\right)^2+1}\)
\(=-3+\dfrac{-2}{2}\\ =-3-1\\ =-4\)
Thay x=1; y=-1; z=3 vào biểu thức ta có:
\(1.\left(-1\right).3+\dfrac{2.1^2}{\left(-1\right)^2}+1\)
\(=-3+\dfrac{2}{1}+1\)
\(=-3+2+1\)
\(=\left(-1\right)+1\)
\(=0\)
Tích mình nha!!!
Ta có : \(\left(x+y+z\right)^2=x^2+y^2+z^2\)
\(\Rightarrow x^2+y^2+z^2+2\left(xy+yz+zy\right)=x^2+y^2+z^2\)
\(\Rightarrow2\left(xy+yz+zx\right)=0\)
\(\Rightarrow xy+yz+zx=0\)
\(\Rightarrow\frac{xy}{xyz}+\frac{yz}{xyz}+\frac{zx}{xyz}=0\)( Chia 2 vế cho xyz )
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=-\frac{1}{z}\)
Ta lại có : \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\left(\frac{1}{x}+\frac{1}{y}\right)^3-\left(\frac{3}{x^2y}+\frac{3}{xy^2}\right)+\frac{1}{z^3}\)
\(=\left(-\frac{1}{z}\right)^3-\frac{3}{xy}\left(\frac{1}{x}+\frac{1}{y}\right)+\frac{1}{z^3}\)
\(=-\frac{3}{xy}\cdot-\frac{1}{z}\)\(=\frac{3}{xyz}\)
\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\) ( đpcm )
\(\left(x+y+z\right)^2=x^2+y^2+z^2\)
\(\Leftrightarrow xy+yz+zx=0\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)
Ta lại co:
\(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}-\frac{3}{xyz}=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}-\frac{1}{xy}-\frac{1}{yz}-\frac{1}{zx}\right)=0\)
\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=\frac{3}{xyz}\)