Tính GTBT: P=\(\frac{4m-2n}{2m+5n}\)với 6m=5n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho:
m-n+p-q \vdots 3
2m+2n+2p-2q \vdots 4
-m-3n+p-3q \vdots -6
6m+8n+2p-6q \vdots 5
Hãy tính:
\frac{(2m-3q)^6+(5n-p)^4}{(9m+5n-4p+6q)^2}=?
A.\frac{1}{75000}
B.\frac{1}{75076}
C.\frac{1}{80000}
D.\frac{1}{85076}
\(\frac{4m-2n}{4m+5n}\) với \(\frac{m}{n}=\frac{1}{5}\)
Ta có : \(\frac{m}{n}=\frac{1}{5}\)hay \(\frac{m}{1}=\frac{n}{5}\)
Đặt \(\frac{m}{1}=\frac{n}{5}=k\Rightarrow\hept{\begin{cases}m=k\\n=5k\end{cases}}\)
Do đó \(\frac{4m-2n}{4m+5n}=\frac{4k-2\cdot5k}{4k+5\cdot5k}=\frac{4k-10k}{4k+25k}=\frac{-6k}{29k}=-\frac{6}{29}\)
b. \(\frac{2x+7}{3x-y}+\frac{2y-7}{3y-x}\)
Ta có : x - y = 7 => x = 7 + y
Do đó \(\frac{2x+7}{3x-y}+\frac{2y-7}{3y-x}=\frac{2\left(7+y\right)+7}{3\left(7+y\right)-y}+\frac{2y-7}{3y-\left(7+y\right)}\)
\(=\frac{14+2y+7}{21+3y-y}+\frac{2y-7}{3y-7-y}\)
\(=\frac{21+2y}{21+2y}+\frac{2y-7}{2y-7}=1+1=2\)
a) \(\frac{m}{n}=\frac{1}{5}\Rightarrow\frac{m}{1}=\frac{n}{5}\)
Đặt \(\frac{m}{1}=\frac{n}{5}=k\Rightarrow\hept{\begin{cases}m=k\\n=5k\end{cases}}\)
Thế vào ta được :
\(\frac{4m-2n}{4m+5n}=\frac{4k-2.5k}{4k+5.5k}=\frac{4k-10k}{4k+25k}=\frac{-6k}{29k}=-\frac{6}{29}\)
b) x - y = 7 => x = 7 + y
Thế vào ta được :
\(\frac{2x+7}{3x-y}+\frac{2y-7}{3y-x}=\frac{2\left(7+y\right)+7}{3\left(7+y\right)-y}+\frac{2y-7}{3y-\left(7+y\right)}\)
\(=\frac{21+2y}{21+2y}+\frac{2y-7}{3y-7-y}\)
\(=\frac{21+2y}{21+2y}+\frac{2y-7}{2y-7}=1+1=2\)
a) \(\frac{10m^5n^2}{4m^2n}=\frac{2m^2n.5m^3n}{2m^2n.2}=\frac{5m^3n}{2}\)
b) \(\frac{1}{3}a\left(3a^2-6+1\right)\)
\(=\frac{1}{3}a.3a^2-\frac{1}{3}a.6+\frac{1}{3}a.1\)
\(=a^3-2a+\frac{1}{3}a\)
\(\lim\limits\frac{1-2n}{5n+3n^2}=\lim\limits\frac{\frac{1}{n^2}-\frac{2}{n}}{\frac{5}{n}+3}=\frac{0}{3}=0\)
a) \(\lim \frac{{5n + 1}}{{2n}} = \lim \frac{{5 + \frac{1}{n}}}{2} = \frac{{5 + 0}}{2} = \frac{5}{2}\)
b) \(\lim \frac{{6{n^2} + 8n + 1}}{{5{n^2} + 3}} = \lim \frac{{6 + \frac{8}{n} + \frac{1}{{{n^2}}}}}{{5 + \frac{3}{{{n^2}}}}} = \frac{{6 + 0 + 0}}{{5 + 0}} = \frac{6}{5}\)
c) \(\lim \frac{{\sqrt {{n^2} + 5n + 3} }}{{6n + 2}} = \lim \frac{{\sqrt {1 + \frac{5}{n} + \frac{3}{{{n^2}}}} }}{{6 + \frac{2}{n}}} = \frac{{\sqrt {1 + 0 + 0} }}{{6 + 0}} = \frac{1}{6}\)
d) \(\lim \left( {2 - \frac{1}{{{3^n}}}} \right) = \lim 2 - \lim {\left( {\frac{1}{3}} \right)^n} = 2 - 0 = 0\)
e) \(\lim \frac{{{3^n} + {2^n}}}{{{{4.3}^n}}} = \lim \frac{{1 + {{\left( {\frac{2}{3}} \right)}^n}}}{4} = \frac{{1 + 0}}{4} = \frac{1}{4}\)
g) \(\lim \frac{{2 + \frac{1}{n}}}{{{3^n}}}\)
Ta có \(\lim \left( {2 + \frac{1}{n}} \right) = \lim 2 + \lim \frac{1}{n} = 2 + 0 = 2 > 0;\lim {3^n} = + \infty \Rightarrow \lim \frac{{2 + \frac{1}{n}}}{{{3^n}}} = 0\)
a: m>n
=>2m>2n
=>2m-2>2n-2
b: m>n
=>-3m<-3n
=>-3m+1<-3n+1
c: m>n
=>2m>2n
=>2m+3>2n+3
mà 2n+3>2n+1
nên 2m+3>2n+1
d: m>n
=>-5m<-5n
=>-5m+3<-5n+3
mà -5n+3<-5n+7
nên -5m+3<-5n+7
\(6m=5n\Rightarrow m=\dfrac{5n}{6}\)
\(\Rightarrow P=\dfrac{4m-2n}{2m+5n}=\dfrac{4.\dfrac{5n}{6}-2n}{2.\dfrac{5n}{6}+5n}=\dfrac{\dfrac{4}{3}n}{\dfrac{20}{3}n}=\dfrac{\dfrac{4}{3}}{\dfrac{20}{3}}=\dfrac{4}{20}=\dfrac{1}{5}\)
@Nguyễn Việt Lâm Cảm ơn bạn nhiều nhe🥰🥰🥰.