Cho (O) bk 9cm và (O') bk 4cm tiếp xúc ngoài tại C. Gọi tiếp tuyến chung ngoài BA với B thuộc (O), A thuộc (O'). Vẽ (I;r) tiếp xúc ngoài với (O) và (O') và tiếp xúc với AB tại N. Tính r
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Theo tính chất hai tiếp tuyến cắt nhau ta được IA = IB, IA = IC .
Tam giác ABC có đường trung tuyến \(AI=\frac{1}{2}BC\)nên là tam giác vuông
Vậy \(\widehat{BAC}=90^o\left(đpcm\right)\)
b) Theo tính chất hai tiếp tuyến cắt nhau ta có IO, IO' là các tia phân giác của hai góc kề bù AIB, AIC nên :
\(\widehat{OIO'}=\widehat{OIA}+\widehat{O'IA}=\frac{1}{2}\widehat{AIB}+\frac{1}{2}\widehat{AIC}=\frac{1}{2}\left(\widehat{AIB}+\widehat{AIC}\right)\)
Vậy : \(\widehat{OIO'}=90^o\)
c) \(\Delta OIO'\) vuông tại A có IA là đường cao nên theo hệ thức giữa cạnh và đường cao ta có:
IA2 = AO.AO' = 9 . 4 = 36
=> IA = 6 ( cm )
Vậy BC = 2 . IA = 2 . 6 = 12 (cm)
a: Gọi AH là tiếp tuyến chung của hai đường tròn (O) và (O'), H∈MN
Xét (O) có
HM,HA là các tiếp tuyến
Do đó: HM=HA và HO là phân giác của góc MHA
Xét (O') có
HA,HN là các tiếp tuyến
Do đó: HA=HN và HO' là phân giác của góc AHN
Ta có: HM=HA
HN=HA
Do đó: HM=HN
=>H là trung điểm của MN
Xét ΔAMN có
AH là đường trung tuyến
\(AH=\dfrac{MN}{2}\)
Do đó: ΔAMN vuông tại A
=>\(\widehat{MAN}=90^0\)
b: HO là phân giác của góc MHA
=>\(\widehat{MHA}=2\cdot\widehat{OHA}\)
HO' là phân giác của góc AHN
=>\(\widehat{AHN}=2\cdot\widehat{AHO'}\)
Ta có: \(\widehat{MHA}+\widehat{NHA}=180^0\)(hai góc kề bù)
=>\(2\cdot\left(\widehat{OHA}+\widehat{O'AH}\right)=180^0\)
=>\(2\cdot\widehat{OHO'}=180^0\)
=>\(\widehat{OHO'}=90^0\)
Xét ΔHO'O vuông tại H có HA là đường cao
nên \(HA^2=OA\cdot O'A\)
=>\(HA^2=9\cdot4=36\)
=>\(HA=\sqrt{36}=6\left(cm\right)\)
MN=2*HA
=>MN=2*6=12(cm)
ΔOIO' vuông tại A có IA là đường cao nên theo hệ thức giữa cạnh và đường cao ta có:
IA2 = AO.AO' = 9.4 = 36
=> IA = 6 (cm)
Vậy BC = 2.IA = 2.6 = 12 (cm)
Lời giải:
Vì $IB, IA$ là 2 tiếp tuyến giao nhau của $(O)$ nên $IB=IA$
$\Rightarrow \triangle IBA$ cân tại $I$
$\Rightarrow \widehat{IAB}=\widehat{IBA}(1)$
Tương tự: $ICA$ cân tại $I$
$\Rightarrow \widehat{IAC}=\widehat{ICA}(2)$
Từ $(1); (2)\Rightarrow \widehat{IAB}+\widehat{IAC}=\widehat{IBA}+\widehat{ICA}$
$\Rightarrow \widehat{BAC}=\widehat{CBA}+\widehat{BCA}$
Mà $\widehat{BAC}+(\widehat{CBA}+\widehat{BCA})=180^0$
$\Rightarrow \widehat{BAC}=90^0$ (đpcm)
b. $(O), (O')$ tiếp xúc ngoài tại $A$ nên $O,A,O'$ thẳng hàng
$IA$ là tiếp tuyến chung của $(O), (O')$ nên $IA\perp OO'$
$BI, IA$ là 2 tiếp tuyến cắt nhau của đường tròn $(O)$ nên $IO$ là phân giác $\widehat{BIA}$ (tính chất 2 tt cắt nhau)
Tương tự: $IO'$ là phân giác $\widehat{CIA}$
Mà $\widehat{BIA}+\widehat{CIA}=\widehat{BIC}=180^0$ nên $\widehat{OIO'}=90^0$
Tam giác $OIO'$ vuông tại $I$ có $IA\perp OO'$ nên áp dụng công thức hệ thức lượng trong tam giác vuông thì:
$IA^2=OA.O'A=9.4=36$
$\Rightarrow IA=6$ (cm)
$BC=BI+IC=IA+IA=2IA=12$ (cm)
K CHO MK VỚI Ạ
HÌNH TỰ VẼ,PHẦN 1 TỰ LÀM
2, Theo tính chất hai tiếp tuyến cắt nhau ta có:
\(IA=IB=IC\)
ΔABC có đường trung tuyến \(AI=\frac{1}{2}BC\)
NÊN: ΔABC VUÔNG TẠI A
⇒ˆBAC=90 độ(dpcm)
3,Theo tính chất hai tiếp tuyến cắt nhau ta có:
\(IO=IO'\)là các tia phân giác của hai góc kề bù \(AIB,AIC\)NÊN:
4,ΔOIO' vuông tại A có:
IA là đường cao nên theo hệ thức giữa cạnh và đường cao:
\(IA^2=OA.OA'\)
\(=9.4=36\)
=>\(IA=6\)
Vậy \(BC=2.IA=2.6=12\left(cm\right)\)
a) Xét (O): AI và DI là 2 tiếp tuyến cắt nhau tại I (gt)
=> AI = DI (TC 2 tiếp tuyến cắt nhau)
CMTT: AI = EI (TC 2 tiếp tuyến cắt nhau)
=> AI = EI = DI
Mà DE = EI + DI
=>AI = EI = DI =\(\dfrac{DE}{2}\)
Xét tam giác ADE có: AI = EI = DI =\(\dfrac{DE}{2}\)(cmt)
=> Tam giác ADE vuông tại A (định lý đảo đường trung tuyến trong tam giác vuông)
=> ^MAN = 90o
Xét tam giác AID: AI = DI (cmt) => Tam giác AID cân tại I
Mà IM là đường phân giác AID (AI và DI là 2 tiếp tuyến cắt nhau tại I)
=> IM là đường cao
=> ^IMA = 90o
CMTT: ^ANI = 90o
Xét TG AMIN:
^IMA = 90o (cmt)
^ANI = 90o (cmt)
^MAN = 90o (cmt)
=> AMIN là hình chữ nhật (dhnb)
b) Xét tam giác OAI vuông tại A, AM là đường cao ( do AM vg góc OI)
=> IM.IO = IA2 (HTL) (1)
Xét tam giác O'AI vuông tại A, AN là đường cao ( do AN vg góc O'I)
=> IN.IO' = IA2 (HTL) (2)
Từ (1) và (2) => IM.IO = IN.IO’ (đpcm)
c) Xét (O) và (O'): 2 đường tròn (O) và (O’) tiếp xúc ngoài tại A (cmt)
=> A \(\in\)OO' (TC đường nối tâm)
mà IA vg góc AO (do AI là tiếp tuyến trong của 2 đường tròn (O) và (O’) tiếp xúc ngoài tại A )
=> OO' vg góc AI tại A (*)
Xét tam giác ADE vuông tại A (^DAE = 90o do AMIN là hcn)
I là TĐ của DE (do ID = IE = \(\dfrac{DE}{2}\))
=> I là tâm đường tròn đường kính DE, nội tiếp tam giác ADE
=> A \(\in\)(I) (**)
Từ (*) và (**) => OO’ là tiếp tuyến của đường tròn đường kính DE có A là tiếp điểm.
d) Xét tg OIO' vuông tại I, AI là đường cao:
AI2 = AO . AO' (HTL)
=> AI2= R. R'
Mà AI = \(\dfrac{DE}{2}\)(cmt)
=> (\(\dfrac{DE}{2}\))2 = R . R'
<=> \(\dfrac{DE^2}{4}\) = R . R'
<=> DE = 2\(\sqrt{R.R'}\)